The study includes preparation and characterisation of mixed azo-linked Schiff-base and DTCs ligands and their complexes. The starting material was isolated from the mixing of naphthyl amine diazonium salt with 2-aminophenolein a 1:1 mole ratio in water. In this work, the formation of azo-linked Schiff-base and DTCs ligands are reported. Ligand of the azo-linked Schiff-base was achieved by the reaction of starting material with 4-(dimethylamino)benzaldehyde) (HL1). The DTCs was isolated by the reaction of (C6H5)2NH with carbon disulphide in potassium hydroxide (L2). The complexes were prepared by mixing the azo-linked Schiff-base ligand and DTCs ligand with the metal salts; CoII, NiII, ZnII and CdII in a 1:1:1 mole ratio. Ligands and complexes were characterised by analytical and spectroscopic analyses including; microanalysis, chloride content, thermal analysis, magnetic susceptibility for complexes, conductance, FTIR, UV-Vis and 1H-NMR spectroscopy. Physico-chemical techniques indicated complexes demonstrated four and six coordinate structures in the solid and solution state. Biological activity of the ligands and their metal complexes were screened for their antimicrobial activity against four bacterial species (Escherichia coli and Enterobacter Gram - ve, (Bacillus stubtilis and Staphylococcus aureus Garam + ve.
In this work, thiadiazole derivatives were prepared by taking advantage of active sites in (2-amino-5-mercapto-1, 3, 4-thiadiazole) as a starting material base. The main heterocyclic compounds (1, 3, 4-thiadiazole, oxazole) etc, 2-amino-5-mercapto-1,3,4-thiadiazole compound (1) was prepared by cyclic closure of thiosemicarbazide compound with anhydrous sodium carbonate and carbon disulfide. Oxidation of (1) via hydrogen peroxide, to have (2) which was treated with chloro acetyl chloride to get (3). Preparation of thiazole ring (4) was from reacting of (3) with thiourea. Synthesis of diazonium salts (5) from compound (4) using sodium nitrite and HCl. Compound (5) reacted with different ester compounds to prepare a new azo compounds (6–8).C
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
High-intensity laser-produced plasma has been extensively investigated in many studies. In this demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction, which opens up new discussions for new light source generation. Moreover, the characterizations of plasma have been improved through the interaction process of laser-plasma. Three types of laser were incorporated in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the
... Show MoreThree azo compounds were synthesized in two different methods, and characterized by FT-IR, HNMR andVis) spectra, melting points were determined. The inhibitory effects of prepared compounds on the activity of human serum cholinesterase have been studied in vitro. Different concentrations of study the type of inhibition. The results form line weaver-Burk plot indicated that the inhibitor type was noncompetitive with a range (33.12-78.99%).
By unusual method for separating two isomers of a substituted nitro-coumarin using a soxhlet extractor and in controlling temperature to get a selective nitration reaction, several new Schiff base coumarins were synthesized from nitro coumarins as starting material, which were reduced by Fe in glacial acetic acid to produce corresponding amino coumarin derivatives. Then the latter was reacted with different aromatic aldehydes to produce the desired Schiff bases derivatives. After characterization by Fourier transform infrared (FT-IR), Proton nuclear magnetic resonance (1HNMR) and Carbon-13 nuclear magnetic resonance (C-NMR), all these compounds were evaluated as potential Antimicrobial and Antioxidant Agents.
In this present work, [4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-methoxyphenl)(A1),4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol(A2),1,1`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) dinaphthalen-2-ol (A3)]C.S was prepared in 3.5% NaCl. Corrosion prevention at (293-323) K has been studied by using electrochemical measurements. It shows that the utilized inhibitors are of mixed type based on the polarization curves. The results indicated that the inhibition efficiency changes were used with a change according to the functional groups on the benzene ring and through the electrochemical technique. Temperature increases with corrosion current
... Show More