The study includes preparation and characterisation of mixed azo-linked Schiff-base and DTCs ligands and their complexes. The starting material was isolated from the mixing of naphthyl amine diazonium salt with 2-aminophenolein a 1:1 mole ratio in water. In this work, the formation of azo-linked Schiff-base and DTCs ligands are reported. Ligand of the azo-linked Schiff-base was achieved by the reaction of starting material with 4-(dimethylamino)benzaldehyde) (HL1). The DTCs was isolated by the reaction of (C6H5)2NH with carbon disulphide in potassium hydroxide (L2). The complexes were prepared by mixing the azo-linked Schiff-base ligand and DTCs ligand with the metal salts; CoII, NiII, ZnII and CdII in a 1:1:1 mole ratio. Ligands and complexes were characterised by analytical and spectroscopic analyses including; microanalysis, chloride content, thermal analysis, magnetic susceptibility for complexes, conductance, FTIR, UV-Vis and 1H-NMR spectroscopy. Physico-chemical techniques indicated complexes demonstrated four and six coordinate structures in the solid and solution state. Biological activity of the ligands and their metal complexes were screened for their antimicrobial activity against four bacterial species (Escherichia coli and Enterobacter Gram - ve, (Bacillus stubtilis and Staphylococcus aureus Garam + ve.
In this paper, we have provided a very thorough analysis of a new novel chelate metal ion complex of [Cu(II),Ag(I)] prepared via the interaction with the ligand{ 2-amino-8-((4-chloro-3-hydroxyphenyl) diazenyl)azo]guanine} [LAAG], which is synthesized by diazo coupling of the 5-amino-2-chlorophenol with amino acid guanine. The ligand and its complexes are identified by a variety of techniques, like [HNMR, FTIR, and Uv-vis] spectral, thermal analysis (TGA), and element analyses (CHN). The molar ratio was achieved so that the Cu(II) complex has (1:2) (M:L) with octahedral geometry; however, the Ag(I) complex has (1:1) (M:L) with tetrahedral geometry, and the ligand acts as neutral N,N-bidentate; as well as the ligand (LAAG) and its complexe
... Show MoreAzo dye ligand was produced by coupling the diazonium salt of 4aminoantipyrine with 2, 4-dimethylphenol. The structure of 1 azo compound was someone by elemental analyses, HNMR, FT-IR and UV-Vis spectroscopic mechanics. Metal complexes of nickel (II) and copper (II) have been performed and depicted. The formation of complexes has been identified by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectral process as well as, conductivity and magnetic properties quantifications. The nature of the complexes formed were studied succeed the mole ratio and continuous variation methods, Beer's law followed over a concentration 4 4 scope (1×10- - 3×10- M). High molar absorbtivity of the complex solutions were observed. Analytica
... Show MoreAbstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting poin
... Show MoreThe reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with
... Show MoreMixed ligands reaction of [2-[(3-hydroxyphenyl)diazinyl]-1,2-benzothiazol-3(2H)-one-1,1-dioxide] (H2L, primary ligand) and bipyridyl (secondary ligand) with salts of Cr(III), Mn(II), Fe(III), Co(II) and Ni(II) was performed. A series of air-stable complexes with distinctive octahedral moieties was created by equal molar ratio (1:1:1). The formation of these compounds was verified using detecting analysis techniques incorporating mass spectra, which validated the achieved geometries. Fourier transform infrared (FTIR) analysis demonstrated how the ligands (H2L and bipyridyl) are chelated as tridentate (ONO) and bidentate (NN) groups, respectively and the coordination with the metal ions. Thermal decomposition studies using pyrolysis (
... Show MoreThe preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
A new Mannich base ligand was prepared by reacting the 2-chloro.-N-(5-mercapto-1, 3, 4-thiadazol -2-yl) acetamide and Piperidine in the presence (formaldehyde) (L) ligand. A series of ligand complexes were prepared from (L) with the metal ion Co (II), Ni (II), Cu (II), Pd (II), Pt (IV), and Au (III). Various spectroscopic techniques such as C.H.N.S, FTIR, UV-VIS, , 1HNMR, 13CNMR, Magnetic moment, and molar conductivity successfully characterize the obtained compounds. The M: L ratio was determined using the molar ratio method in solution. All prepared compounds' antibacterial and antifungal activity was studied against two types of bacteria and one type of fungi at a rate of 0.02M. The standard ΔH°
... Show MoreBackground: Enforcement of sustainable and green chemistry protocols has seen colossal surge in recent times, the development of an effective, eco-friendly, simple and novel methodologies towards the synthesis of valuable synthetic scaffolds and drug intermediates. Recent advances in technology have now a more efficient means of heating reactions that made microwave energy. Efforts to synthesize novel heterocyclic molecules of biological importance are in continuation. Microwave irradiation is well known to promote the synthesis of a variety of organic and inorganic compounds. The aim of current study was to conceivea mild base mediated preparation of novel Schiff base of 2-Acetylpheno with trimethoprim drug (H2TPBD) and its complexes w
... Show MoreA series of Schiff bases linked to phthalimidyl phenyl sulfonate moiety have been synthesized via multistep synthesis. The first step involved reaction of phthalic anhydride with aniline producing N-phenyl phthalamic acid which was subsequently dehydrated to the corresponding N-phenyl phthalimide via treatment with acetic anhydride and anhydrous sodium acetate. The synthesized imide was treated with chlorosulfonic acid in the third step producing 4-(N-phthalimidyl) phenyl sulfonyl chloride which was introduced in reaction with 4-hydroxy acetophenone in the fourth step producing 4-[4-(N-phthalimidyl) phenyl sulfonate] acetophenone and this in turn was introduced successfully in condensation reaction with various aromatic primary amines affor
... Show More