CNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MorePhosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtL
... Show MoreThis study dealt with the basics of financial inclusion in terms of concept, importance and objectives, The empowerment of women financially and bank ,and then the relationship between financial inclusion and women, and determine the requirements of inclusion Financial resources for women. The analytical descriptive method was used for data, which included reviewing and analyzing information and data in economic and financial literature. The study: reached a number of conclusions, the most important of which are Financial inclusion contributes to women's financial and banking support, as there is a positive relationship between financial institutions Banking and women's access to financial and banking services, thus playing a rol
... Show MoreFiled experiment was conducted to test the effect of saline water and potassium fertilizers rate on proline and water potential of Pisum sativum L. (Var.Senador Cambados ) leaves . Treatments of the experiment included two levels of water salinity( 2, 7 dSm-1) as a main plot and fertilizer rates as a sub plot. Results indicated that irrigation of plant with saline water 7 dSm-1 and fertilization 150 kg/donum increased proline accumulation and water potential 0.31 mmol/g,-17.00 bar at 9 AM morning and 0.62 mmol/g , -21.00 bar at 3 PM afternoon ,Irrigating plant with a 2 dSm-1 and fertilization 300 kg/donum decreased proline accumulation and water potential of leaves 0.22 mmol/g, -16.00 bar at 9 A
... Show MoreMS Elias, RGM AL-helfy, Plant Archives, 2019
When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show More