Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-posed identification of a space-dependent source from a time-integral observation of the weighted main dependent variable. For both, this inverse source problem as well as its corresponding direct formulation, we rigorously investigate the question of well-posedness. We also give examples of inverse problems for which sufficient conditions guaranteeing the unique solvability are fulfilled, and present the results of numerical simulations. It is hoped that the analysis initiated in this study will open up new avenues for research in the field of direct and inverse problems for degenerate parabolic equations with applications.
This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
In this research was the study of a single method of estimation and testing parameters mediating variables (Mediation) in a specimen structural equations SEM a bootstrap method, for the purpose of application of the integrated survey of the situation Marital data and health mirror Iraqi (I-WISH) for the year 2011 from the Ministry of Planning - device Central Bureau of Statistics, and applied to the appropriate data from the terms of the data to a form of structural equation SEM using factor analysis affirmative (Confirmatory Factor analysis) CFA As a way to see the match variables that make up the model, and after confirming the model matching or suitability are having the effect of variables mediation in the model tested by the
... Show MoreIn this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.
Abstract:
This study is studied one method of estimation and testing parameters mediating variables in a structural equations model SEM is causal steps method, in order to identify and know the variables that have indirect effects by estimating and testing mediation variables parameters by the above way and then applied to Iraq Women Integrated Social and Health Survey (I-WISH) for year 2011 from the Ministry of planning - Central statistical organization to identify if the variables having the effect of mediation in the model by the step causal methods by using AMOS program V.23, it was the independent variable X represents a phenomenon studied (cultural case of the
In this work, the pseudoparabolic problem of the fourth order is investigated to identify the time -dependent potential term under periodic conditions, namely, the integral condition and overdetermination condition. The existence and uniqueness of the solution to the inverse problem are provided. The proposed method involves discretizing the pseudoparabolic equation by using a finite difference scheme, and an iterative optimization algorithm to resolve the inverse problem which views as a nonlinear least-square minimization. The optimization algorithm aims to minimize the difference between the numerical computing solution and the measured data. Tikhonov’s regularization method is also applied to gain stable results. Two
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
Developing countries have depended since long time on the developed countries to increase the levels of development and improving rates of growth direction to the best way where taking this dependence many shapes influenced by the evolution form of international relations and this dependence shows how the great deficiencies in sources of local financing, which called developing countries to increase their reliance on external funding sources, represented in the form of grants, subsidies, loans and foreign investment, pursuing States in that the application of economic reform policies in pursuit of faster economic growth and restructure its economy and achieve economic stability. In the early eighties of the last
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show More