Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-posed identification of a space-dependent source from a time-integral observation of the weighted main dependent variable. For both, this inverse source problem as well as its corresponding direct formulation, we rigorously investigate the question of well-posedness. We also give examples of inverse problems for which sufficient conditions guaranteeing the unique solvability are fulfilled, and present the results of numerical simulations. It is hoped that the analysis initiated in this study will open up new avenues for research in the field of direct and inverse problems for degenerate parabolic equations with applications.
The subject of multi- ethnics is one of the most important subjects in the study of political
geography, as multi- ethnics and its consequent problems are global geopolitical phenomena
that started early and reached its peak with the beginning of the twentieth century, because of
major changes in the political landscape that resulted by wars and led to the collapse of many
empires and major powers, a matter which led to put new political maps according to certain
considerations of the colonial powers, especially in Africa and Asia. All these things led to
the most serious challenges based on ethnic and sectarian conflict and led to the development
of geopolitical problems. Among the examples what most countries in th
In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
An experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh
... Show More:
While practicing of International business particularly that centered on foreign direct investment, let on one side, to achieving objectives of transnational corporations specially that represented in continuous pursue to improving its cash flows and maximization of stockholders wealth which is considered the most important objective to the transnational corporations, but in the same time its lead, on other side, to increasing the foreign exchange risk exposuring these corporations. So, the transnational corporations (TNCs) struggling to make strategies which are dealing in smart way, with this risk and its management in way that enable to avoiding risk comple
... Show MoreThe purpose of the paper is to tind the degree of the approximation of a functions f be bounded , measurable and defined
in interval [a,h]by Bernstein polynomial in LP space 1 $ p < oo by
using Ditzian-Totik modulus of smootlmess and k 1n average modvlus of smoothness.