Long-term organic amendments are a key strategy to build soil organic carbon (SOC) stocks in semiarid agroecosystems, where low biomass inputs and calcareous parent material constrain carbon accumulation. This 14-year field experiment in central Iraq (2000–2014) evaluated how a gradient of organic matter (OM) additions (0, 1, 2.5, 5, 10, and 20%) affects SOC dynamics, nutrient availability, and soil organic matter composition in clay-dominated, semiarid soils. Surface and subsurface samples (0–30, 30–60, and 60–90 cm) were analysed for SOC, nutrients, and mid-infrared Fourier transform infrared (FTIR) spectra, which were then integrated with Partial Least Squares (PLS) regression and RothC simulations. Moderate OM inputs (5–10%) were most effective in increasing surface SOC from 0.71% to 2.11%, while electrical conductivity, pH, and total nitrogen remained within agronomically acceptable ranges. FTIR spectra showed enhanced C–H and C=O bands in surface horizons, indicating concurrent accumulation of labile and more stable organic fractions, whereas low- and mid-wavenumber bands (1080–670 cm⁻¹) confirmed the persistence of clay and silicate mineral structures across depths. PLS models predicted SOC and total N with high accuracy (R² = 0.84–0.995), low RMSEP, and excellent predictive performance (RPD = 3.05–41), particularly under higher OM inputs. RothC simulations reproduced the observed depth-dependent SOC gradients, with deviations typically ranging from −22% to +10%, and confirmed that most carbon gains are concentrated in surface layers, while deeper horizons change only slightly. The combined use of FTIR spectroscopy, spectral PLS modelling, and RothC provides a robust framework for quantifying and predicting SOC responses to organic amendments in semiarid, calcareous soils. These findings highlight that sustained, moderate OM applications can substantially enhance SOC sequestration and soil fertility in degraded Iraqi soils, with broader relevance for semiarid agroecosystems worldwide.
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreLow-level microbial activity due to the production of organic acids is a recognized problem during the initial phase of food waste composting. Increasing such activity levels by adjusting the pH values during the initial composting phase is the primary objective to be investigated. In this study, sodium acetate (NaoAc) was introduced as an amendment to an in-vessel composting system. NaoAc was added when the pH of the compost mixture reached a low level (pH < 5), the addition increased pH to 5.8. This had a positive effect on the degradation of organic materials i.e. the formation of methane gas compared to the results without NaoAc addition.
The results also proved that anaerobic-aerobic in-vessel composting could reduce the
... Show MoreIn this work, seven soil samples were brought brought to study and analyses the element concentrations from different southern regions of Iraq using laser-induced breakdown spectroscopy (LIBS) technique. It has been documented as an atomic emission spectroscopy (AES) technique. Laser-induced plasma utilized to analyze elements in materials (gases, liquids, and solids). In order to analyze elements in materials (gases, liquids, and solid). The Nd: YAG laser excitation source at 1064 nm with pulse width 9 ns is used to generate power density of 5.5 x 1012 MW/mm2, with optical spectrum in the range 320-740 nm. From this investigation, the soil sample analysis of the southern cities of Iraqi, it is concluded that the rich soil element of P, Si,
... Show MoreLaser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0
Organic Permeable Base Transistors (OPBTs) reach a very high transit frequency and large on-state currents. However, for a later commercial application of this technology, a high operational stability is essential as well. Here, the stability of OPBTs during continuous cycling and during base bias stress is discussed. It is observed that the threshold voltage of these transistors shifts toward more positive base voltages if stressed by applying a constant potential to the base electrode for prolonged times. With the help of a 2D device simulation, it is proposed that the observed instabilities are due to charges that are trapped on top of an oxide layer formed around the base electrode. These charges are thermally released after rem
... Show MoreOrganic soil is problematic soils in geotechnical engineering due to its properties, as it is characterized by high compressibility and low bearing capacity. Therefore, several geotechnical techniques tried to stabilize and improve this soil type. In this study, sodium silicate was used to stabilize sand dune columns. The best sodium silicate concentration (9%) was used, and the stabilized sand dune columns were cured for seven days. The results for this soil were extracted using a numerical analysis program (Plaxis 3D, 2020).In the case of studying the effect of (L/D) (where ‘’L” and ‘’D’’ length and diameter of sand dune columns) of a single column of sand dunes stabilized with sodium silicate with a diff
... Show More