One of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to study the effect of added CF on asphalt mixture performance. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) were also used to investigate the morphologies of CF and reinforced asphalt mixtures and to identify the mechanism of improvement .According to the study results, the ideal ceramic fiber content was 1.5%, which yielded an improve in Marshall stability and reduced rut depth by 22.05% and 27.71% at temperatures of 50°C and 60°C, respectively, when compared to asphalt mixtures without CF. Microscopic analyses clearly revealed the surface properties, particle diameter size, and fiber distribution of the reinforced mixture, including the network structure and strength mechanism, which improved the performance of the asphalt mixture by forming a three-dimensional network.
Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within
... Show MoreCurrent design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the
... Show MoreThe Nuclear structure of 110-116Cd isotopes was studied theoretically in the framework of the interacting boson model of IBM-l and IBM-2. The properties of the lowest mixed symmetry states such as the 1+, 2+ and 3+ levels produced by the IBM-2 model in the vibrational-limit U(5) of Cd - isotopes are studied in details. This analysis shows that the character of mixed symmetry of 2+ is shared between and states in 110-114Cd – isotopes, the large shar goes to s, while in isotope, the state is declared as a mixed symmetry state without sharing. This identification is confirmed by the percentage of F-spin contribution. The electromagnetic properties of E2 and Ml operators were investigated and the results were analyzed. Various
... Show MoreThe presence of deposition in the river decreases the river flow capability's efficiency due to the absence of maintenance along the river. In This research, a new formula to evaluate the sediment capacity in the upstream part of Al-Gharraf River will be developed. The current study reach lies in Wasit province with a distance equal to 58 km. The selected reach of the river was divided into thirteen stations. At each station, the suspended load and the bedload were collected from the river during a sampling period extended from February 2019 till July 2019. The samples were examined in the laboratory with a different set of sample tests. The formula was developed using data of ten stations, and the other three s
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreBackground: Accurate measurement of a patient’s height and weight is an essential part of diagnosis and therapy, but there is some controversy as to how to calculate the height and weight of patients with disabilities. Objective: This study aims to use anthropometric measurements (arm span, length of leg, chest circumference, and waist circumference) to find a model (alternatives) that can allow the calculation of the height and the body weight of patients with disabilities. Additionally, a model for the prediction of weight and height measurements of patients with disabilities was established. Method: Four hander patients aged 20-80 years were enrolled in this study and divided into two groups, 210 (52.5%) male and 190 (47.5%) fe
... Show MoreFiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show MoreNowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental
... Show More