Preferred Language
Articles
/
pYb4dIYBIXToZYALxIrU
Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers
...Show More Authors

One of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to study the effect of added CF on asphalt mixture performance. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) were also used to investigate the morphologies of CF and reinforced asphalt mixtures and to identify the mechanism of improvement .According to the study results, the ideal ceramic fiber content was 1.5%, which yielded an improve in Marshall stability and reduced rut depth by 22.05% and 27.71% at temperatures of 50°C and 60°C, respectively, when compared to asphalt mixtures without CF. Microscopic analyses clearly revealed the surface properties, particle diameter size, and fiber distribution of the reinforced mixture, including the network structure and strength mechanism, which improved the performance of the asphalt mixture by forming a three-dimensional network.

Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Evaluation of Job-Mix Formula Tolerances as Related to Asphalt Mixtures Properties
...Show More Authors

The current Iraqi standard specifications for roads and bridges allowed the prepared Job-Mix Formula for asphalt mixtures to witness some tolerances with regard to the following: coarse aggregate gradation by ± 6.0 %, fine aggregate gradation by ± 4.0 %, filler gradation by ± 2.0 %, asphalt cement content by ± 0.3 % and mixing temperature by ± 15 oC. The objective of this work is to evaluate the behavior of asphalt mixtures prepared by different aggregates gradations (12.5 mm nominal maximum size) that fabricated by several asphalt contents (40-50 grade) and various mixing temperature. All the tolerances specified in the specifications are taken into account, furthermore, the zones beyond these tolerances

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Sustainable Construction Materials And Technologies (scmt)
TRIAXIAL TEST OF HYDRATED LIME ON THE MECHANICAL PROPERTIES OF HOT MIX ASPHALT CONCRETE
...Show More Authors

This paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.

... Show More
View Publication
Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Civil Engineering Journal
Model Development for the Prediction of the Resilient Modulus of Warm Mix Asphalt
...Show More Authors

Increasing material prices coupled with the emission of hazardous gases through the production and construction of Hot Mix Asphalt (HMA) has driven a strong movement toward the adoption of sustainable construction technology. Warm Mix Asphalt (WMA) is considered relatively a new technology, which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt. The Resilient modulus (Mr) which can be defined as the ratio of axial pulsating stress to the corresponding recoverable strain, is used to evaluate the relative quality of materials as well as to generate input for pavement design or pavement evaluation and analysis. Based on the aforementioned preface, it is

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
A Viscoplastic Modeling for Permanent Deformation Prediction of Rubberized and Conventional Mix Asphalt
...Show More Authors

View Publication
Crossref
Publication Date
Thu Jun 08 2023
Journal Name
Open Engineering
A review of rutting in asphalt concrete pavement
...Show More Authors

Undoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Dec 10 2019
Journal Name
Journal Of Engineering And Applied Sciences
Rutting Resistance Potential of High Modulus Asphalt Concrete Pavements
...Show More Authors

The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu

... Show More
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Improvement of Asphalt Concrete Mixtures by Adding Pulverised Fuel Ash as Filler
...Show More Authors

Consuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.

Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 19 2018
Journal Name
Advances In Civil Engineering
Moisture Susceptibility of Sustainable Warm Mix Asphalt
...Show More Authors

Sustainable pavements are pavements that meet the requirements of present generation without influencing the capability of the future generation to meet their needs. One of the problems of the warm mix asphalt is that it has low resistance to moisture damage; therefore, the aim of this research paper is to study the possibility of producing more durable warm mixes against the moisture damage with the use of recycled concrete aggregate (RCA) which has not been studied before. Six replacement rates (0, 20, 40, 60, 80, and 100%) for the coarse version aggregate (VA) with RCA were studied. The Marshall mix design method was used to determine the optimum asphalt cement content for each replacement rate. Thereafter, specimens with the opt

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
Moisture Damage of Warm Mix Asphalt Concrete
...Show More Authors

Implementation of Warm Mix Asphalt concrete (WMA) is getting global acceptance due to the restrictions for protecting the environment and the requirements to reduce fuel consumption. In this investigation, two WMA mixtures have been prepared in the laboratory using medium curing cutback (MC-30) and Cationic emulsion asphalt. Hot Mix Asphalt (HMA) was also prepared for comparison. The cylinder specimens (63.5mm) in height and (101.6mm) in diameter were constructed from the mixtures and subjected to indirect tensile strength test to determine the Tensile Strength Ratio (TSR). The cylinder specimens of (101.6mm) in height and (101.6mm) in diameter were also constructed from those mixtures and subjected to static compressive

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 19 2018
Journal Name
Advances In Civil Engineering
Moisture Susceptibility of Sustainable Warm Mix Asphalt
...Show More Authors

Sustainable pavements are pavements that meet the requirements of present generation without influencing the capability of the future generation to meet their needs. One of the problems of the warm mix asphalt is that it has low resistance to moisture damage; therefore, the aim of this research paper is to study the possibility of producing more durable warm mixes against the moisture damage with the use of recycled concrete aggregate (RCA) which has not been studied before. Six replacement rates (0, 20, 40, 60, 80, and 100%) for the coarse version aggregate (VA) with RCA were studied. The Marshall mix design method was used to determine the optimum asphalt cement content for each replacement rate. Thereafter, specimens with the opt

... Show More
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref