Preferred Language
Articles
/
pYb4dIYBIXToZYALxIrU
Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers
...Show More Authors

One of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to study the effect of added CF on asphalt mixture performance. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) were also used to investigate the morphologies of CF and reinforced asphalt mixtures and to identify the mechanism of improvement .According to the study results, the ideal ceramic fiber content was 1.5%, which yielded an improve in Marshall stability and reduced rut depth by 22.05% and 27.71% at temperatures of 50°C and 60°C, respectively, when compared to asphalt mixtures without CF. Microscopic analyses clearly revealed the surface properties, particle diameter size, and fiber distribution of the reinforced mixture, including the network structure and strength mechanism, which improved the performance of the asphalt mixture by forming a three-dimensional network.

Scopus Crossref
Publication Date
Wed Dec 05 2018
Journal Name
Italian Journal Of Gynaecology & Obstetrics
Prediction of Fetal Lung Maturity by Ultrasonic Thalamic Echogenicity and Ossification Centers of Fetal Femur and Tibia
...Show More Authors

Publication Date
Tue Jun 14 2005
Journal Name
Iraqi Journal Of Laser
Bending Effect on the Single Mode Optical Fibers
...Show More Authors

Bending effects on the transmission of optical signal are investigated on a single mode
optical fiber (SMOF) of 10 m length, core radius of 5 μm and optical refractive index difference
0.003. The bending radii (R) were between 0.08 and 0.0015 m. A great decrease in the amplitude is
shown for radii below 0.01 m. Sudden break down occurs for radii less than 0.0015 m. Birefringence
(B) is difficult to measure for long fibers. Meanwhile, B was found by comparing with calibrated
fiber of the same properties but of length of 0.075 m. The results show an increase in propagation
constant (Δβ) and the decrease in beat length (Lb), and show that bending decreases the critical radius
of curvature (Rc) related to B. The chang

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Birefringence for Elliptical-Core Fibers with Low Ellipticities
...Show More Authors

Model birefringence was measured for elliptical-core fibers with low ellipticities, note the birefringence depends strongly on the frequency, especially when fiber is being operated near the higher mode cutoff where ν  for circular fiber of the single-mode type that correspond to the birefringence maximum. When ν  this also correspond to the birefringence maximum that can be introduced in an elliptical core fiber while still operating in the single-mode regime near the higher mode cutoff. Also the birefringence is proportional to the fiber core ellipticity when core ellipticity is much less than unity, but this birefringence deviates from the linear for the large core ellipticities.

View Publication Preview PDF
Crossref
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study of the Physical and Morphological Properties of Ceramic Insulator
...Show More Authors

In this investigation insulator ceramic body was prepared by using iraqi local materials, these are kaolin, silica sand glass, feldspar with weight percentage (45%,25%, 30%)respectively.  After the end of treating drying and milling of raw material mixing with different concentrations of sodium silicate(1%,0.7%,0.5%,0.2%,0.1%) while zinc oxide was added at fixed weight percentage.  A disc samples was prepared after compaction and then fired by sintering temperatures (1250, 1350)oC respectively.A surface morphology was studied by using optical microscope and measurements of apparent density and porosity was under taken to the sintered samples by using Archimedes method.The study showed that the microscopic images for samples sur

... Show More
View Publication Preview PDF
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Possibility of Reducing the Thermal Conductivity of Ceramic Refractory Materials
...Show More Authors

The research work covers a study of the possibility of producing porous ceramic bodies
as a thermal insulators by adding fired Dechla kaolinite (grog)to the same non burned
kaolinite.
Different weight percentage ranged between (0,15,25,35and40)from grog and sawdust
passed through mesh 50 to Deuchla-clay kaolinit.Cylindrical shape samples (30mm diameter
and 30mm height) were prepared by the semi-dry methed,moulding pressure was 50 N/mm
2
.
After drying at 110
o
c,the samples were burnet in the furnace at temperatures
900,950,1000,1050,and 1100
o
c. The sawdust burnt out and leaves air spaces which contribute
to the high thermal insulation value.
The fired samples were investigated to de

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 19 2025
Journal Name
Journal Of Baghdad College Of Dentistry
X-ray diffraction and biocompatibility of glass ionomer cement reinforced by different ratios of synthetic hydroxyapatite
...Show More Authors

Background: This study was done to assist X-ray diffraction and biocompatability of glass ionomer cement reinforced by different ratios of Hydroxyapatite. Materials and Methods: The powder of glass ionomer cement reinforced by different ratios of Hydroxyapatite were used to get X-ray diffraction pattern by X-ray diffraction machine, While for biocompatibility test, A polyethylene tubes containing glass ionomer cement reinforced by different ratios of Hydroxyapatite were implanted on the dorsal submucosal site of Rabbit's tissues and histological slide were prepared for histopathological study. Results: X-ray diffraction test showed that all elements of glass ionomer cement reinforced by different ratios of Hydroxyapatite were react with eac

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Theoretical Study of the Photons Production Kinetic In Hot Quark-Gluon Plasma Matter
...Show More Authors

In this paper, we study flow of photons rate production in a quark-gluon QG plasma. General theory of this study is based on the field theory for hard interaction. The kinetic of photons production from hard interaction in charm with anti-top to production photons with gluon due to plasma phase at high temperatures (150, 200,250,300 and 350 MeV) .It has been investigated and studied using the postulate of quantum chromodynamic theory QCD .The photons production rate of hard photons with( GeV) are insensitive to strength coupling and depend mainly on the temperature of system T . Despite the different critical temperature (150 and 190MeV) comes, we find that same order of flow rate photons magnitude in both cases. In both cases, the f

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Hot Press Bonding of Aluminum Alloy AA6061-T6 to Polyamide and Polyamide Composites
...Show More Authors
Abstract<p>In this study, aluminum alloyAA6061-T6 was joined by a hot press process with three types of material; polyamide PA 6.6 (nylon), 1% carbon nanotube/PA6.6 and 30% carbon fiber/PA6.6 composites. Three parameters were considered in the hot pressing; temperature (180, 200 and 220°C), pressure (2, 3, 4, 5 and 6 bar) and time of pressing (1, 2, 3, 4 and 5 minutes for 200ºC, and 0.25, 0.5, 0.75, 1 and 1.25 minutes for220ºC). Applied pressure has great effect on shear strength of the joint, corresponding to bonding time and temperature. Maximum shear strength was 8.89MPa obtained for PA6.6 at bonding conditions of 4 bar, 220ºC and 0.75 minute. For 30% carbon fiber/PA6,6 shear recorded was</p> ... Show More
View Publication
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction By Classical and Flow Zone Indictor (FZI) Methods for an Iraqi Gas Field
...Show More Authors

The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.

View Publication Preview PDF
Publication Date
Fri Nov 02 2018
Journal Name
Aci Special Publication
CFRP Repairing System at Openings in Reinforced Concrete T-Beams Cracked by Impact Loads
...Show More Authors

View Publication