The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the mid-span of the tested beams from five different heights: 250, 500, 1000, 1500, and 1900 mm. Moreover, nonlinear Finite Element (FE) models were developed and validated using the experimental data. Static loading was defined as a displacement-controlled loading and the impact loading was modeled as dynamic explicit analysis with different drop velocities. The validated models were used to conduct a parametric study to investigate the effect of the concrete compressive strength on the performance of the composite beams under static and impact loadings. For the composite specimen with steel I-sction, the maximum impact force was 190% greater than the reference specimen NR-I at a drop height of 1900 mm, whereas the maximum impact forces for the specimens composite specimens with GFRP I-sction without and with shear connectors were 19% and 77%, respectively, more significant than the reference beam at the same drop height. The high stiffness for the steel I-beams relative to the GFRP I-beam was the reason for this difference in behavior. The concrete compressive strength was more effective in improving the impact behavior of the composite specimens relative to those without GFRP I-beams.
The present work evaluated the differences in mechanical properties of two athletic prosthetic feet samples when subjected to impact while running. Two feet samples designated as design A and B were manufactured using layers of different orientations of woven glass fiber reinforced with unsaturated polyester resin as bonding epoxy. The samples’ layers were fabricated with hand lay-up method. A theoretical study was carried out to calculate the mechanical properties of the composite material used in feet manufacturing, then experimental load-deflection test was applied at 0 degree position and 25 degree dorsiflexion feet position and impact test were applied for both feet designs to observe the behavior
... Show MoreBackground: Orthodontic mini-implants are increasingly used in orthodontics and the bone density is a very important factor in stabilization and success of mini-implant. The aim of this study was to observe the relationship among maximum bite force (MBF); body mass index (BMI); face width, height and type; and bone density in an attempt to predict bone density from these variables to eliminate the need for CT scan which have a highly hazard on patient. Materials and Methods: Computed tomographic (CT) images were obtained for 70 patients (24 males and 46 females) with age range 18-30 years. The maxillary and mandibular buccal cortical and cancellous bone densities were measured between 2nd premolar and 1st molar at two levels from the alveol
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
This research is a result of other studies made about the iraqi public and its relationship with different states institutions, until recently, such studies were almost non-existent. The main characteristic that distinguishes scientific research is that it involves a specific problem that needs to be studied and analysed from multiple aspects. What is meant by identifying the problem, is to limit the topic to what the researcher wants to deal with, rather than what the title suggests as topics which the researcher doesn’t want to deal with. The problem of this research is the absence of thoughtful and planned scientific programs to build a positive mental image of the institutions of the modern state in general and the House of Represe
... Show MoreNew class A^* (a,c,k,β,α,γ,μ) is introduced of meromorphic univalent functions with positive coefficient f(z)=□(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.
Industrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show MoreRisk identification and assessment can be analysed using many risk management tools. Fishbone diagram is one of these techniques which can be employed, for the identification of the causes behind the construction failure, which has become a phenomenon that often gets repeated in several projects. If these failures are not understood and handled scientifically, it may lead to disputes between the project parties. Additionally, the construction failure also leads to an increase in the project budget, which in turn causes a delay in the completion of the projects. Punching shear in reinforcement slab may be one of the reasons for construction failures. However, there are many doubts about other causes that lead to this failure as w
... Show MoreBackground: This research identified Streptococci spp. depending on culture, biochemistry, the VITEK technique, ability to produce biofilms, and antibiotic resistance. Aim: The goal of this study was to perform microbiological procedures to evaluate the qualitative qualities of mozzarella cheese against infective Streptococci using microbiological care. Methods: Sixty (60) mozzarella cheese samples were brought from diverse markets in Baghdad from October 2023 to December 2023 at the Zoonoses Research Unit and Veterinary Public Health Department, Veterinary Medicine College, University of Baghdad. Culture of samples on agar (MacConkey and blood) and aerobically incubated at 37°C for 48 hours. Gram staining purified colonies to
... Show MoreA particulate composite material was prepared by adding the Titanium dioxide (TiO2) with a particle size of (75-150) µm to Epoxy resin at weight percentage of (10%,20%,30%,40%,50%).The following some mechanical properties were studied,fracture toughness, hardness.casting preparation methods were used in this study includes preparing plate of matrix and composites. specimens were prepared according to ASTM for the Mechanical properties tests. After that Another samples were heat treated for three and six hour at 65C?. Fracture toughness (Kic) represent for stress intensity factor results were showed that the curve of three hours aging increases in fracture toughness (Kic) for composites but for six hours aging increases fracture tough
... Show More