The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the mid-span of the tested beams from five different heights: 250, 500, 1000, 1500, and 1900 mm. Moreover, nonlinear Finite Element (FE) models were developed and validated using the experimental data. Static loading was defined as a displacement-controlled loading and the impact loading was modeled as dynamic explicit analysis with different drop velocities. The validated models were used to conduct a parametric study to investigate the effect of the concrete compressive strength on the performance of the composite beams under static and impact loadings. For the composite specimen with steel I-sction, the maximum impact force was 190% greater than the reference specimen NR-I at a drop height of 1900 mm, whereas the maximum impact forces for the specimens composite specimens with GFRP I-sction without and with shear connectors were 19% and 77%, respectively, more significant than the reference beam at the same drop height. The high stiffness for the steel I-beams relative to the GFRP I-beam was the reason for this difference in behavior. The concrete compressive strength was more effective in improving the impact behavior of the composite specimens relative to those without GFRP I-beams.
When the guard honey bees, Apis mellifera L., form a clump at the hive entrance or on the flight board, the oriental hornet, Vespa orientails L., either creeps toward the clump or hovers over it in order to take a bee. Once the hornet creeps, only few bees facing the hornet become alert, rock their heads and antennae, open their wings, and take a posture of defense. The rest of the clump stays listless without any signal of concern. However, the clump stays dense and the defending bees do not detach themselves neither from the rest of the clump nor from each other. For this reason, it is very difficult for the hornet to grab a bee unless the latter makes a “mistake” by detaching herself from other adjacent bees. If the hornet grabs s
... Show MoreAbstract: Polarization beam splitter (PBS) integrated waveguides are the key components in the receiver of quantum key distribution (QKD) systems. Their function is to analyze the polarization of polarized light and separate the transverse-electric (TE) and transverse-magnetic (TM) polarizations into different waveguides. In this paper, a performance study of polarization beam splitters based on horizontal slot waveguide has been investigated for a wavelength of . PBS based on horizontal slot waveguide structure shows a polarization extinction ratio for quasi-TE and quasi-TM modes larger than with insertion loss below and a bandwidth of . Also, the fabrication tolerance of the structure is analyzed.<
... Show MoreIn this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
An oxidative polymerization approach was used to create polyaniline (PANI) and Fe2O3 /PANI nanoparticle combination. Various characterization approaches were used to investigate the structural, morphological, and Fe2O3 /PANI nanoparticle structures. The findings support the synthesis of polycrystalline nanoparticle PANI and Fe2O3 /PANI spherical nanoparticle composites. Gram-positive bacteria are tested for antibacterial activity. Various quantities of Nanoparticles of PANI and Fe2O3 /PANI nanoparticle composites were used to test Staph-aureus and gram-negative bacteria, E-coli, and candida species. PANI has antibacterial properties against all microo
... Show MoreBackground: Diabetes mellitus is a major risk factor for chronic periodontitis (CP) and hyperglycemia has an important role in the enhancement of the severity of the periodontitis. It has been reported that the progression of CP causes shifting of the balance between bone formation and resorption toward osteoclastic resorption, and this will lead to the release of collagenous bone breakdown products into the local tissues and the systemic circulation. Cross-linked N-telopeptide of type I collagen (NTx) is the amino-terminal peptides of type I collagen which is released during the process of bone resorption. This study was conducted to determine the effects of nonsurgical periodontal therapy on serum level of NTx in type 2 diabetic patients
... Show MoreA mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th
... Show MoreRoller Compacted Concrete (RCC) is a technology characterized mainly by the use of rollers for compaction; this technology achieves significant time and cost savings in the construction of dams and roads. The primary scope of this research is to study the durability and performance of roller compacted concrete that was constructed in the laboratory using roller compactor manufactured in local market. A total of (60) slab specimen of (38×38×10) cm was constructed using the roller device, cured for 28 days, then 180 sawed cubes and 180 beams are obtained from RCC slab. Then, the specimens are subjected to 60 cycles of freezing and thawing, sulfate attack test and wetting and drying. The degree of effect of the type of coarse aggregate (c
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show More