The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the mid-span of the tested beams from five different heights: 250, 500, 1000, 1500, and 1900 mm. Moreover, nonlinear Finite Element (FE) models were developed and validated using the experimental data. Static loading was defined as a displacement-controlled loading and the impact loading was modeled as dynamic explicit analysis with different drop velocities. The validated models were used to conduct a parametric study to investigate the effect of the concrete compressive strength on the performance of the composite beams under static and impact loadings. For the composite specimen with steel I-sction, the maximum impact force was 190% greater than the reference specimen NR-I at a drop height of 1900 mm, whereas the maximum impact forces for the specimens composite specimens with GFRP I-sction without and with shear connectors were 19% and 77%, respectively, more significant than the reference beam at the same drop height. The high stiffness for the steel I-beams relative to the GFRP I-beam was the reason for this difference in behavior. The concrete compressive strength was more effective in improving the impact behavior of the composite specimens relative to those without GFRP I-beams.
This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC) slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength,
... Show MoreBraces in straight bridge systems improve the lateral-torsional buckling resistance of the girders by reducing the unbraced length, while in horizontally curved and skew bridges, the braces are primary structural elements for controlling deformations by engaging adjacent girders to act as a system to resist the potentially large forces and torques caused by the curved or skewed geometry of the bridge. The cross-frames are usually designed as torsional braces, which increase the overall strength and stiffness of the individual girders by creating a girder system that translates and rotates as a unit along the bracing lines. However, when they transmit the truck’s live load forces, they can produce fatigue cracks at their connection
... Show MoreThe Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreBackground: The study of human leukocytes (HLA) alleles, and haplotype frequencies within populations provide an important source of information for anthropological investigation, organ and hematopoietic stem cell transplantation as well as disease association, certain diseases showed association with specific alleles specially those of known or suspected hereditary origin or immunological basis, whether simple renal cyst is congenital or acquired is still unclear and need to be investigated.Objectives: To study the genetic aspect of simple renal cysts by detecting the gene frequency and the haplotype of HLA class I of patients with simple renal cysts, and to find the presence of these cysts in other family members.Method: Thirty patient
... Show MoreBackground: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture.This study evaluated tostudy the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on adaptation or gap space between the denture base and the stone cast and compare with non-fiber reinforcement and effect of palatal vault shapes on adaptation of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymeri
... Show MoreThis study aimed to obtain a local isolation of Aspergillus niger and then studied its ability to produce citric acid from raw materials available locally using solid state fermentation. Six local isolates were collected from different sources including some samples of the damaged fruits such as grapefruit, oranges and sindi. Wheat bran was used as a raw material or as culture medium for the production of citric acid from the collected isolates. The conditions for citric acid production were determined by humidity percentage of 1: 1 (water: culture medium), temperature of 28 C, pH 4 and inoculum dose with 5× 106 spore/ml and for 3 days of incubation. The orange was the best model for citric acid production with a concentration of 12.8 mg/m
... Show MoreA series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading cap
... Show MoreBuckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t
... Show MoreThis paper is devoted to investigate experimentally and theoretically the structural behavior of reinforced concrete hollow beams which have internal transverse ribs under effect of shear. The number of the internal ribs is the major variable adopted in this research, while, the other variables are kept constant for all tested specimens. The experimental part includes poured and test of four (200x300x1200mm) beam specimens, three of these specimens were hollow with different locations of internal ribs and one of them was solid. The experimental results indicated that the shear strength are increased (33%) to (60%) for beams containing internal ribs in comparison with reference beam. Also, the change of beam state from ho
... Show More