In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affect the performance-based seismic assessment of buildings are the building height and the characteristics of the earthquake. Despite this, very few studies accounted for the earthquake characteristics and the influence of height on the vulnerability of buildings in Australia. Consequently, the combined effect of building height and the characteristics of the earthquake were investigated in this study. This was achieved through numerical modeling and time-history analyses of three typical two-, four-, and nine-story RC frame buildings in Australia. Moreover, these buildings were subjected to three different types of ground motions which were: short- and long-duration, and near-fault earthquakes. Fragility analysis was then conducted for the three buildings under all the selected earthquake suites. It was noted from the median values of the fragility curves that the four-story and the nine-story RC buildings were 17% and 18% more susceptible to damage in comparison with the two-story building under short-duration earthquakes. Moreover, it was also noted that the median value of the vulnerability increased by 33%, 40%, and 50% for the two-, four-, and nine-story buildings, sequentially, when subjected to near-fault compared to short-duration earthquakes.
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreMulti-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us
... Show MoreThe main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti
This research aims to choose the appropriate probability distribution to the reliability analysis for an item through collected data for operating and stoppage time of the case study.
Appropriate choice for .probability distribution is when the data look to be on or close the form fitting line for probability plot and test the data for goodness of fit .
Minitab’s 17 software was used for this purpose after arranging collected data and setting it in the the program.
&nb
... Show Moreهدفت الدراسة الى التعرف على مستوى استخدام إدارة المعرفة و تكنولوجيا المعلومات لدى القيادات الإدارية تُعدّ لعبة الإسكواش من الألعاب الفردية، وواحدة من ألعاب المضرب، والتي تمتاز بالسرعة والحركة الدائمة في داخل القاعة، ولعل أهم ما يميز هذه اللعبة المتعة التي يشعر بها اللاعبون الممارسون لها، لأنها تجبر ممارسيها على الحركة المستمرة عن طريق تبادل لعب الكرة، وتتميز بالتحدي المباشر، وتتطلب اليقظة والحرص وال
... Show MoreTwitter popularity has increasingly grown in the last few years, influencing life’s social, political, and business aspects. People would leave their tweets on social media about an event, and simultaneously inquire to see other people's experiences and whether they had a positive/negative opinion about that event. Sentiment Analysis can be used to obtain this categorization. Product reviews, events, and other topics from all users that comprise unstructured text comments are gathered and categorized as good, harmful, or neutral using sentiment analysis. Such issues are called polarity classifications. This study aims to use Twitter data about OK cuisine reviews obtained from the Amazon website and compare the effectiveness
... Show MoreIn multivariate survival analysis, estimating the multivariate distribution functions and then measuring the association between survival times are of great interest. Copula functions, such as Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical situations and applicable fo
... Show MoreThis paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreSpeech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
Recently there has been an urgent need to identify the ages from their personal pictures and to be used in the field of security of personal and biometric, interaction between human and computer, security of information, law enforcement. However, in spite of advances in age estimation, it stills a difficult problem. This is because the face old age process is determined not only by radical factors, e.g. genetic factors, but also by external factors, e.g. lifestyle, expression, and environment. This paper utilized machine learning technique to intelligent age estimation from facial images using support vector machine (SVM) on FG_NET dataset. The proposed work consists of three phases: the first phase is image preprocessing include four st
... Show More