Preferred Language
Articles
/
pYZOVIYBIXToZYAL0IKR
The influence of earthquake characteristics on the seismic performance of reinforced concrete buildings in Australia with varying heights
...Show More Authors

In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affect the performance-based seismic assessment of buildings are the building height and the characteristics of the earthquake. Despite this, very few studies accounted for the earthquake characteristics and the influence of height on the vulnerability of buildings in Australia. Consequently, the combined effect of building height and the characteristics of the earthquake were investigated in this study. This was achieved through numerical modeling and time-history analyses of three typical two-, four-, and nine-story RC frame buildings in Australia. Moreover, these buildings were subjected to three different types of ground motions which were: short- and long-duration, and near-fault earthquakes. Fragility analysis was then conducted for the three buildings under all the selected earthquake suites. It was noted from the median values of the fragility curves that the four-story and the nine-story RC buildings were 17% and 18% more susceptible to damage in comparison with the two-story building under short-duration earthquakes. Moreover, it was also noted that the median value of the vulnerability increased by 33%, 40%, and 50% for the two-, four-, and nine-story buildings, sequentially, when subjected to near-fault compared to short-duration earthquakes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Stability and Seismic Performance of Tall Steel Structures with Hybrid Energy Absorbers Including P-Delta Effect
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Advances In Structural Engineering
Simulation and design model for reinforced concrete slabs with lacing systems
...Show More Authors

Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Advances In Structural Engineering
Simulation and design model for reinforced concrete slabs with lacing systems
...Show More Authors

Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Experimental Analysis for the Influence of Ignition Time on Combustion Characteristics of a Free Piston Engine Linear Generator
...Show More Authors
Abstract<p>Free Piston Engine Linear Generator (FPELG) is a modern engine and promising power generation engine. It has many advantages compared to conventional engines such as less friction, few numbers of parts, and high thermal efficiency. The cycle-to-cycle variation one of the big challenges of the FPELG because it is influence on the stability and output power of the engine. Therefore, in this study, the effect of ignition time on combustion characteristics is investigated. The single-cylinder FPELG with spark ignition (SI) combustion type by using compressed natural gas (CNG) fuel type was set to run. LabVIEW is used to run the engine and control of input parameters. All experimental data</p> ... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Sun Oct 02 2022
Journal Name
Engineering, Technology &amp; Applied Science Research
Static and Dynamic Behavior of Circularized Reinforced Concrete Columns Strengthened with Hybrid CFRP
...Show More Authors

In this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sun Jun 06 2021
Journal Name
Materials
Strengthening of Continuous Reinforced Concrete Deep Beams with Large Openings Using CFRP Strips
...Show More Authors

To accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens

... Show More
Scopus (15)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Sun Jan 23 2022
Journal Name
Buildings
Structural Efficiency of Non-Prismatic Hollow Reinforced Concrete Beams Retrofitted with CFRP Sheets
...Show More Authors

Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hol

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied.                              &

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 10 2023
Journal Name
Journal Of Engineering
Experimental Study of Pre-Cast Reinforced Concrete Deep Beams (Hallow Core section) Retrofitting with Carbon Fiber Reinforced Polymer (CFRP)
...Show More Authors

Experimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 24 2020
Journal Name
Advances In Civil Engineering
Analytical study on torsional behavior of concrete beams strengthened with fiber reinforced polymer laminates using softened truss model
...Show More Authors

This study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t

... Show More
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref