One of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed gene ontology-based mutation operator. The performance of the proposed EA to have a high quantity and quality of the detected complexes is assessed on two yeast PPINs and compared with two benchmarking gold complex sets. The reported results reveal the ability of modularity density to be more productive in detecting more complexes with high quality when teamed up with a gene ontology-based mutation operator.
With the increase in industry and industrial products, quantities of waste have increased worldwide, especially plastic waste, as plastic pollution is considered one of the wastes of the modern era that threatens the environment and living organisms. On this basis, a solution must be found to use this waste and recycle it safely so that it does not threaten the environment. Therefore, this research used plastic waste as an improvement material for clay soil. In this research, two types of tests were conducted, the first of which was a laboratory test, where the undrained shear strength (cohesion), compression index (Cc), and swelling index (Cr) of the improved and unimproved soils were calculated (plastic was added in pr
... Show MoreThis study carry’s out the correlation and the effect of two main variables, these variables are Job Satisfaction included six sub: wages - salaries and justice and yield, working conditions and services, pattern of supervision and the relationship with the manger, Relationship with colleagues, the content of the work and the variety of tasks, development and promotion opportunities available to an individual, and Organizational Performance included two sub variables: Efficiency, Effectiveness. This research was conducted using a questioner as a main tool, This questioner was distributed randomly to a research community composed of
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreRecently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreResearch includes evaluation of projects implemented and which entered into trial operation period in accordance with the evaluation criteria and of (cost, quality and time) to determine the size deviations gap for the sample of projects during the years of assessment (2011-2012-2013-2014) of each of the three evaluation criteria, and then followed by a calculation the size of the overall gap to the problem based on the research problem to determine deviations from the specific implementation of each project by answering several questions to answer turns out the reasons for these deviations occur.
The importance of research Focus on the evaluation of received projects from contractors executing the projec
... Show MoreAbstract Background: Timely diagnosis of periodontal disease is crucial for restoring healthy periodontal tissue and improving patients’ prognosis. There is a growing interest in using salivary biomarkers as a noninvasive screening tool for periodontal disease. This study aimed to investigate the diagnostic efficacy of two salivary biomarkers, lactate dehydrogenase (LDH) and total protein, for periodontal disease by assessing their sensitivity in relation to clinical periodontal parameters. Furthermore, the study aimed to explore the impact of systemic disease, age, and sex on the accuracy of these biomarkers in the diagnosis of periodontal health. Materials and methods: A total of 145 participants were categorized into three groups based
... Show More