In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sample was taken into consideration In order to calculate physical and microstructural characteristics including internal strain, dislocations density, surface area, the number of unit cells, and texture coefficient.
This study employed the biosynthetic technique for creating vanadium nanoparticles (VNPs), which are affordable and user-friendly; VNPs was synthesized using vanadium sulfate (VOSO4.H2O) and a plant extract derived from Fumaria Strumii Opiz (E2) at a NaOH concentration of 0.1 M. This study aims to investigate the potential applications of utilizing an adsorbent for metal ions to achieve environmentally friendly production and assess its antibacterial activity and cytotoxicity. The reaction was conducted in an alkaline environment with a pH range of 8–12. The resulting product was subjected to various characterization techniques, including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, x-ray diffraction (XRD), t
... Show MoreFlow-injection (FI) spectrophotometric method has been developed for the analysis of thymol in pharmaceutical preparations. The method is based on organic coupling reaction between thymol and 4-amino antipyrine in the presence of alkaline medium to form an intense stable red color complex with copper nitrate that has a maximum absorption at 490 nm. Optimum conditions for determination of the drug was investigated .The calibration graph was linear over the range of 5-500 µg.ml-1 of thymol . The limit of detection (LOD) and limit of quantification (LOQ) were 1.81 ?g mL-1 and 3.60 ?g mL-1 respectively .The proposed method was applied satisfactorily to the determination of thymol in mouth wash preparations. The procedure is characterized by
... Show More
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show MoreWheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show MoreA novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.
... Show MoreA novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.
... Show More