In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sample was taken into consideration In order to calculate physical and microstructural characteristics including internal strain, dislocations density, surface area, the number of unit cells, and texture coefficient.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreComputer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show MoreIncreasing the variety of products that are being designed with sculptured surfaces, efficient machining of these surfaces has become more important in many manufacturing industries. The objective of the present work is the investigation of milling parameters for the sculptured surfacesthat effecting of surface roughness during machining of Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The influence of the selected variables on the chosen characteristics have been accomplished using Taguchi design approach, also ANOVA had been utilized to evaluate the contributionsof each parameter on proc
... Show MorePorous Silicon (PS) layer has been prepared from p-type silicon by electrochemical etching method. The morphology properties of PS samples that prepared with different current density has been study using atom force measurement (AFM) and it show that the Layer of pore has sponge like stricture and the average pore diameter of PS layer increase with etching current density increase .The x-ray diffraction (XRD) pattern indicated the nanocrystaline of the sample. Reflectivity of the sample surface is decrease when etching current density increases because of porosity increase on surface of sample. The photolumenses (PL) intensity increase with increase etching current density. The PL is affected by relative humidity (RH) level so we can use
... Show More
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show MoreThis article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show More