In recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. To the best of our knowledge, no research to date has been conducted to assist network forensics investigators and cloud service providers in finding an optimal method for investigation of network vulnerabilities found in cloud networks. To this end and in this paper, the state-of-the-art C-NFMs are classified and analyzed based on the cloud network perspective using SWOT analysis. It implies that C-NFMs have a suitable impact on cloud network, which further requires for reformation to ensure its applicability in cloud networks.
In recent years, the number of applications utilizing mobile wireless sensor networks (WSNs) has increased, with the intent of localization for the purposes of monitoring and obtaining data from hazardous areas. Location of the event is very critical in WSN, as sensing data is almost meaningless without the location information. In this paper, two Monte Carlo based localization schemes termed MCL and MSL* are studied. MCL obtains its location through anchor nodes whereas MSL* uses both anchor nodes and normal nodes. The use of normal nodes would increase accuracy and reduce dependency on anchor nodes, but increases communication costs. For this reason, we introduce a new approach called low communication cost schemes to reduce communication
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Abstract
Robotics manipulators with structural flexibility provide an attractive alternative to rigid robotics manipulators for many of the new and evolving applications in robotics. In certain applications their use is unavoidable. The increased complexity in modeling and control of such manipulators is offset by desirable performance enhancements in some respects. In this paperthe single- link flexible robotics manipulator was designed and implemented from Perspex and designed with 0.5 m length , 0.02 m width and with 0.004 m thickness with mass located at the tip. There are four subsystems; motion, control, accelerometer and gyro and a host computer subsystem. The work principle of single-link robotics manipul
... Show MoreThe Purpose of this study are analyze financial lease advantage through analyze and discuss financial lease cost, and achieve tax advantage to reach study objective. study include two firms ,oil firm and construction firm with limited liability. The inductive method is used for the applied part in analyzing the financial data of the companies considered in 2011-2015.The result of the study shows that the financial lease achieve present value of the costs is positive. This study found out the results that verify the hypothesis: The tax advantage of financial Leasing is characterized by decreasing cost and achieving higher tax shield. The study also found the most important recommendations of awareness of the benefits arising f
... Show MoreThe research objective are analyze financial leverage advantage through analyze and discuss financial leverage cost, and achieve tax advantage. study include two firms ,oil firm and industrial companies firm with limited liability.The inductive method is used for the applied part in analyzing the financial data of the companies considered in 2011-2015.The result of the study shows that the financial leverage achieve present value of the costs is Negative . The study concluded that the most important conclusions of the tax advantage of leverage is higher costs as well as achieving a low tax shield ,This study found out the results that interest payments related to pre-tax all of the loan amount and the percentage of the interest rate on b
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected optimum conditions,
... Show MoreActive worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.
Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreThis study was conducted on a sample of commercial banks in Iraq, chosen according number of considerations for twenty banks, contained two public banks and eighteen private banks. &
... Show More