In recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. To the best of our knowledge, no research to date has been conducted to assist network forensics investigators and cloud service providers in finding an optimal method for investigation of network vulnerabilities found in cloud networks. To this end and in this paper, the state-of-the-art C-NFMs are classified and analyzed based on the cloud network perspective using SWOT analysis. It implies that C-NFMs have a suitable impact on cloud network, which further requires for reformation to ensure its applicability in cloud networks.
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreObjectives To determine the prevalence of oral lesions by age and gender among the pediatric population in Iraq. Materials and methods A review of the archives of the oral pathology department of Baghdad University from, 1970 Materials and Methods: A review of the archives of the oral pathology department of Baghdad University from 1970 to 2013 for all biopsies from children aged 0–15 years old. Results A total of 1286 child specimens represented 11.98% of all biopsied lesions. The pyogenic granuloma was the most frequent lesion in children, and the periapical cyst was the most frequent lesion from an odontogenic origin. The incidence of malignant lesions was higher in the 0–3 age group than other groups. Conclusions The majority of les
... Show MoreVaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.
To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.
Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc
The purpose of this research is to design a list of the scientific and moral values that should be found in the content of the computer textbook for the second intermediate grade, as well as to analyze the content of the above- mentioned book by answering the following question:
What is the percentage of availability of scientific and moral values in the content of the computer textbook for Second Intermediate grade issued by the Iraqi Ministry of Education / the general directorate of the curriculum, for the academic year (2017-2018)?
In order to achieve the research objectives, the descriptive method (content analysis method) was adopted. The research community has been iden
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreDeep submicron technologies continue to develop according to Moore’s law allowing hundreds of processing elements and memory modules to be integrated on a single chip forming multi/many-processor systems-on-chip (MPSoCs). Network on chip (NoC) arose as an interconnection for this large number of processing modules. However, the aggressive scaling of transistors makes NoC more vulnerable to both permanent and transient faults. Permanent faults persistently affect the circuit functionality from the time of their occurrence. The router represents the heart of the NoC. Thus, this research focuses on tolerating permanent faults in the router’s input buffer component, particularly the virtual channel state fields. These fields track packets f
... Show More