Preferred Language
Articles
/
pRYzLIcBVTCNdQwCODtn
Increasing confidence in full field modelling and water flood planning for a giant reservoir under primary depletion through Material Balance modelling
...Show More Authors
Abstract<p>One of the principle inputs to project economics and all business decisions is a realistic production forecast and a practical and achievable development plan (i.e. waterflood). Particularly this becomes challenging in supergiant oil fields with medium to low lateral connectivity. The main objectives of the Production Forecast and feasibility study for water injection are:</p><p>1- Provide an overview of the total expected production profile, expected wells potential/spare capacity, water breakthrough timing and water cut development over time</p><p>2- Highlight the requirements to maintain performance, suggest the optimum development pattern</p><p>3- Increasing confidence in business decisions to develop the reservoir in question</p><p>The main tool used for these purposes is a sophisticated reservoir simulation software, namely CMG©, since it can predict reservoir behavior, honor physical constraints and capture the heterogeneity within the reservoir to accurately predict performance. However, the starting point for this kind of complicated studies needs to start from the basics, in order to understand the big picture and be able to plan properly for the scope to be delivered, hence, utilizing analytical tools like MBAL becomes quite necessary, if not crucial, to the success of full field modelling and choosing an optimum water flood pattern and design.</p><p>This paper covers the methodology for building the reservoir component utilizing a Material Balance model, of which the results will be used as an input to reservoir simulation to evaluate and accurately predict reservoir performance, which directly feeds into planning for water flooding projects and selection of an optimum flood pattern.</p><p>A Tank model was built at first to assess and understand the driving forces (energies) of the reservoir in question, utilizing pressure and production data from legacy wells, the prepared model is also supported by geological and petro physical studies to give representative results. Acquired Static Bottom Hole Pressures (SBHPs) in wells were used as anchor points for the tank pressure and to test the validity of the history match. Multiple analytical methods to QC the results and STOIIP volume were conducted, e.g. the Havlena-Odeh method.</p><p>This methodology has been tested successfully in the stated super giant oil field, in which the reservoir in question is a carbonate rock formation. An example of this is covered in the paper. It was concluded that utilizing a history matched and coherent MBAL model before conducting a detailed reservoir simulation study can save a lot of time and effort by providing guidance to the path which needs to be followed, and sheds light on the critical elements to be looked after. This has also helped to uncover the driving mechanisms and energies in the reservoir, hence allowing the engineer to plan for the necessary voidage replacement and water injection rates to sustain the reservoir pressure and pattern development. Another technical advantage of the described method is the higher sustainability of the model.</p><p>The suggested method, in combination with geological and petro physical information available, can be applied to majority of the reservoirs. This combination is paramount to ensure optimum time and planning that is followed for each reservoir development study that involves water flooding.</p>
Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Petroleum Science And Engineering
Organic geochemistry of hydrocarbon seeps associated with sulfurous spring water, western Iraq: Biodegradation, source rock and sedimentary environment
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Colloids And Surfaces A: Physicochemical And Engineering Aspects
Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas
...Show More Authors

tA novel synthesis procedure is presented for preparing triethanolamine-treated graphene nanoplatelets(TEA-GNPs) with different specific areas (SSAs). Using ultrasonication, the covalently functionalizedTEA-GNPs with different weight concentrations and SSAs were dispersed in distilled water to prepareTEA-GNPs nanofluids. A simple direct coupling of GNPs with TEA molecules is implemented to synthesizestable water-based nanofluids. The effectiveness of the functionalization procedure was validated by thecharacterization and morphology tests, i.e., FTIR, Raman spectroscopy, EDS, and TEM. Thermal conduc-tivity, dispersion stability, and rheological properties were investigated. Using UV–vis spectrometer, ahighest dispersion stability of 0.876

... Show More
Crossref (93)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
study the effects of the polluted waste water on the environment
...Show More Authors

to study the discribrion and the pollution in the environment in the south of baghdad samples of waste water from industrail units using the mercury in its process also

View Publication Preview PDF
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of dyes from polluted water by adsorption on maize cob
...Show More Authors

This research aimed to examine the effect of concentration of dyes stuff, contact time, temperature and ratio of adsorbent weight in (gm) to volume of solution in (ml) on the percentage removal. Two dyes were used; direct blue 6 and direct yellow and the adsorbent was the maize cob. Batch experiments were performed by contacting different weights of adsorbent with 50 ml of solution of desired concentration with continuous stirring at various temperatures. The percentage of removal was calculated and the maximum percentage of removal was 80%. And as the concentration of solution, contact time, temperature and the ratio of adsorbent to volume of solution increase the percentage of removal increase.

View Publication Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Evaluating the Recharge of Ground Water within Al-Wand River Basin
...Show More Authors

The estimation of recharge to ground water is the important basics to improve the use of ground water with other available resources, and to save ground water resource from depletion, especially when using large quantity of ground water during a long time such as for agricultural purposes. Al-Wand River Basin in Iraq suffers from water shortage of its requirement of Blajo–Al-Wand Project, and to cover this shortage, the ground water plays a good role to overcome this problem. In this study, three methods were used to estimate the recharge and ground water storage for Al-Wand Basin, these methods are: Water Table Fluctuation (WTF), Water Balance of Climatic for Basin, and Water Table Balance for Basin. The results showe

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Assessment of Water Clarity within Dokan Lake Using Remote Sensing Techniques
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Mar 19 2022
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Mass Ratio on Phytoremediation of Nickel Contaminated Water
...Show More Authors

 

Water pollution is one of the global challenges that the society must address in the 21st century aiming to improve the water quality, reduce human pollutants and ecosystem health impacts. In phytotoxicity test, the plant of Iresine herbstii was exposed to remove nickel from simulated wastewater using two different ratios (mass of plant to the mass of nickel) (,Rp/Ni) for 21 days with sub-surface batch system. During the exposure period, the removal of Ni concentrations (2, 5 and 10 mg/L) for two mass ratio (2,800 and 34,000) were (83.6%, 77.2%, 78.0%) and (86.8%, 97% and 95.6%), respectively. final result of the rate was found that the highest removal occurred, 97%, at a mass ratio of 34,000 and

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Stabilization of Al-Rustamiya Waste Water Treatment Plant Sludge Using Lime
...Show More Authors

A study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Stand

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 15 2019
Journal Name
Al-khwarizmi Engineering Journal
Desalination of Highly Saline Water Using Direct Contact Membrane Distillation (DCMD)
...Show More Authors

In this work, laboratory experiments were carried out to verify direct contact membrane distillation system’s performance in highly saline water desalination. The study included the investigation of various operating conditions, like feed flow rate, temperature and concentration of NaCl solution and their impact on the permeation flux were discussed. 16 cm2 of a flat sheet membrane module with commercial poly-tetra-fluoroethylene (PTFE) membrane, which has 0.22 μm pore size, 96 µm thickness and 78% average porosity, was used. A high salt rejection factor was obtained greater than 99.9%, and the permeation flux up to 17.27 kg/m2.h was achieved at 65°C for hot feed side and 20°C for cold side stream.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
Diyala Journal Of Engineering Sciences
NFLUENCE OF WATER SOURCE ON COMPRESSIVE STRENGTH OF HIGH STRENGTH CONCRETE
...Show More Authors

This research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using

... Show More