A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsurface flow phytoremediation system would have great potential for the reclamation of kerosene-contaminated water.
Two samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system
In any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by
... Show MoreProduced water is accompanied with the production of oil and gas especially at the fields producing by water drive or water injection. The quantity of these waters is expected to be more complicated problem with an increasing in water cut which is expected to be 3-8 barrels water/produced barrel oil.Produced water may contain many constituents based on what is present in the subsurface at a particular location. Produced water contains dissolved solids and hydrocarbons (dissolved and suspended) and oxygen depletion. The most common dissolved solid is salt with concentrations range between a few parts per thousand to hundreds parts per thousand. In addition to salt, many produced waters also contain high levels of heavy metals like zinc, bari
... Show MoreThe friendly-environment geophysical methods are commonly used in various engineering and near-surface environmental investigations. Electrical Resistivity Imaging technique was used to investigate the subsurface rocks, sediments properties of a proposed industrial site to characterize the lateral and vertical lithological changes. via the electrical resistivity, to give an overview about the karst, weak and robust subsoil zones. Nineteen 2D ERI profiles using Wenner array with 2 m electrode spacing have been applied to investigate the specific industry area. One of these profiles has been conducted with one-meter electrode spacing. The surveyed profiles are divided into a number of blocks, each block consists of several parallel pr
... Show Moreirrigation use at many stations along the Euphrates River inside the Iraqi lands and to try to correlate the results with the satellite image analyses for the purpose of making a colored model for the Euphrates that can be used to predict the quality classifications of the river for irrigation use at any point along the river. The Bhargava method was used to calculate the water quality index for irrigation use at sixteen stations along the river from its entrance to the Iraqi land at Al-Qaim in Anbar governorate to its union with the Tigris River at Qurna in Basrah governorate. Coordinates of the sixteen stations of the Euphrates River were projected at the mosaic of Iraq satellite image which was taken from LANDSAT satellite for bands 1, 2
... Show MoreThe study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show MoreIn this study, concentrations of radon and uranium were measured for twenty six samples of soil. The radon concentrations in soil samples measured by registrant alpha-emitting radon (222Rn) by using CR-39 track detector. The uranium concentrations in soil samples measured by using registrar fission fragments tracks in CR-39 track detector that caused by the bombardment of U with thermal neutrons from 241 Am-Be neutron source that has flux of 5 ×103n cm-2 s-1.
The concentrations values were calculated by a comparison with standard samples The results show that the radon concentrations are between (91.931-30.645Bq/m3).
The results show that also the uranium concentrat