Detecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was constructed using well logging data from 14 wells to estimate reservoir breakdown pressures. The reservoir instability results obtained from the MEM were discussed based on wellbore failure criteria, including breakout, drilling fluid losses, and breakdown pressures. Additionally, seismic data was utilized to offer essential insights for determining optimum well locations by identifying the boundaries between the reservoir beds. The horizontal stress contrast, Young's modulus, Poisson's ratio, and unconfined compressive strength were analyzed to reflect the geomechanical quality of the reservoir. Appropriate layers for placing a horizontal well were considered based on both geological and engineering objectives. This work showed that geomechanical models, along with petrophysical models and seismic data, should be considered for selecting the optimum zone for reservoir development.
Carrageenan extract is a compound of sulfated polyglycan that is taken out from red seaweeds. Being hydrocolloid in nature, carrageenan has gelling, emulsifying and thickening properties allowing it to be commonly used in the oral healthcare products and cosmetics. Due to its bioactive compounds, carrageenan has been shown to have antimicrobial, antiviral, and antitumor properties. The purpose of this work is to study the probable use of carrageenan on the diseases that are related to oral cavity and on the genomic DNA in in vitro experimental model
In this study, the effects of k-carrageenan on four different cell lines related to the cancer and normal cells which cultured on selective media were done. Moreover, the eff
... Show MoreThis work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86 in order to achieve two fractions, below 220oC as a gasoline fraction and above 220oC as light cycle o
... Show MoreThis work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o
... Show MoreThis study offers additional evidence for the occurrence of oil residues within fractures of the basement rocks in the Upper Benue Trough, Nigeria. The data suggests that the observed oil residues were originally generated as light oils, which were later biodegraded into heavy oils. These Upper Benue Trough's oil stains are a valuable tool for hydrocarbon exploration in the region as they indicate the existence of a petroleum system in the basin. We find a strong similarity to the proportions of C27, C28, and C29 regular steranes of oils found in the sandstones and shales of the Bima Formation in the Upper Benue Trough when we plot the relative quantities of these steranes of the investigated basement rock oil types on a ternary gra
... Show MoreOne of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir. MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta
... Show MoreLaurylamine hydrochloride CH3(CH2)11 NH3 – Cl has been chosen from cationic surfactants to produce secondary oil using lab. model shown in fig. (1). The relationship between interfacial tension and (temperature, salinity and solution concentration) have been studied as shown in fig. (2, 3, 4) respectively. The optimum values of these three variables are taken (those values that give the lowest interfacial tension). Saturation, permeability and porosity are measured in the lab. The primary oil recovery was displaced by water injection until no more oil can be obtained, then laurylamine chloride is injected as a secondary oil recovery. The total oil recovery is 96.6% or 88.8% of the residual oil has been recovered by this technique as shown
... Show MoreThe catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreIn the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreThis work deals with thermal cracking of three samples of extract lubricating oil produced as a by-product from furfural extraction process of lubricating oil base stock in AL-Dura refinery. The thermal cracking processes were carried out at a temperature range of 325-400 ºC and atmospheric pressure by batch laboratory reactor. The distillation of cracking liquid products was achieved by general ASTM distillation (ASTM D -86) for separation of gasoline fraction up to 220 ºC from light cycle oil fraction above 220 ºC. The comparison between the conversions at different operating conditions of thermal cracking processes indicates that a high conversion was obtained at 375°C, according to gasoline production. According to gasoline produ
... Show More