Detecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was constructed using well logging data from 14 wells to estimate reservoir breakdown pressures. The reservoir instability results obtained from the MEM were discussed based on wellbore failure criteria, including breakout, drilling fluid losses, and breakdown pressures. Additionally, seismic data was utilized to offer essential insights for determining optimum well locations by identifying the boundaries between the reservoir beds. The horizontal stress contrast, Young's modulus, Poisson's ratio, and unconfined compressive strength were analyzed to reflect the geomechanical quality of the reservoir. Appropriate layers for placing a horizontal well were considered based on both geological and engineering objectives. This work showed that geomechanical models, along with petrophysical models and seismic data, should be considered for selecting the optimum zone for reservoir development.
The aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were
Risk factors can be considered unique in construction projects, especially in tendering phase. This research is directed to recognize and evaluate the importance of critical risk factors in the tendering phase related to Iraq’s construction project. As a rule, construction projects are impacted by risk factors throughout the project life cycle; without identifying and allocating these risk factors, the project cannot succeed. In this paper, the open and closed questionnaires are used to categorize the critical risk factors in tendering phase. Research aims to recognize the factors that influence the success of tendering phase, to determine the correct response to the risk’s factors in this research article, (IBM, SPSS, V23) package has
... Show MoreRisk factors can be considered unique in construction projects, especially in tendering phase. This research is directed to recognize and evaluate the importance of critical risk factors in the tendering phase related to Iraq’s construction project. As a rule, construction projects are impacted by risk factors throughout the project life cycle; without identifying and allocating these risk factors, the project cannot succeed. In this paper, the open and closed questionnaires are used to categorize the critical risk factors in tendering phase. Research aims to recognize the factors that influence the success of tendering phase, to determine the correct response to the risk’s factors in this research article, (IBM, SPSS, V23) package has
... Show MoreThe current research discusses "The Relationship critical factors for knowledge transfer in strategic success opportunities", the attention have been increased on knowledge transfer and strategic success subjects because on being one of the important and contemporary issues, which have a significant impact on the existence of organizations and its future. The research aims to identify the critical factors for knowledge transfer in private high education environment which enables (the college community surveyed) to achieve strategic success, also the research sought to answer questions related to research problem by testing a number of major and minor hypothes in correlation, in order to test the hypotheses I us
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
Despite recent attempts to improve safety in the construction sector, this sector is considered dangerous and unsafe. Iraq is one of the emerging nations that suffers from a lack of construction safety management. In 2018, the construction sector in Iraq was responsible for 38% of all industrial accidents. Creating a safety program minimizes this problem by making safety an intrinsic part of construction projects. As a result, this article aims to identify the crucial safety factors that affect the safety performance in Iraqi construction projects. After conducting a critical literature review of the related literature, a list of 35 sub-factors classified into nine categories of main factors was chosen to rank each facto
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show More
