Detecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was constructed using well logging data from 14 wells to estimate reservoir breakdown pressures. The reservoir instability results obtained from the MEM were discussed based on wellbore failure criteria, including breakout, drilling fluid losses, and breakdown pressures. Additionally, seismic data was utilized to offer essential insights for determining optimum well locations by identifying the boundaries between the reservoir beds. The horizontal stress contrast, Young's modulus, Poisson's ratio, and unconfined compressive strength were analyzed to reflect the geomechanical quality of the reservoir. Appropriate layers for placing a horizontal well were considered based on both geological and engineering objectives. This work showed that geomechanical models, along with petrophysical models and seismic data, should be considered for selecting the optimum zone for reservoir development.
Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of
... Show MoreSesame crop, one of the very important oily, industrial, and summer crops that is economically important, has been investigated. The plantation and production of this crop has been studied in Al-Qadisiyah governorate during 2003-218. This is because this governorate is well-known by sesame plantation. Such a study helps to know the geographical distribution of sesame agricultural season in 2017-2018, and explore the most important natural factors that affect its plantation. Different research approaches have been adopted based on that facts that need to be met. A field study approach has been used in studying sesame crop descriptively and conceptually, shedding light on its nutritional and economic importance. Moreover, a descriptive com
... Show MoreIn this study, the possible protective effects of daidzein on ifosfamide-induced neurotoxicity in male rats were examined by the determination of changes in selected oxidant–antioxidant markers of male rats’ brain tissue.
Twenty-eight (28) apparently-healthy Wistar male rats weighing (120-150gm) allocated into 4 groups (n=7) were used in this study. Rats orally-administered 1% tween 20 dissolved in distilled water/Control (Group I); rats were orally-administered daidzein suspension (100mg/kg) for 7 days (Group II); rats intraperitoneally-injected with a single dose of ifosfamide (500 mg/kg) (Group III); rats orally-administered for 7 days with the daidzein (100mg/
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreAll major organs may be impacted by the connective disease systemic lupus erythematosus, a separate risk factor for coronary artery disease (CAD). Adhesion molecules like intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) can detect endothelial damage and dysfunction, which appear to play a crucial role. This study investigated whether people with SLE had elevated subclinical and clinical atherosclerosis risk factors. Traditional CAD risk factors such as smoking, hypertension, and hyperlipidemia cannot entirely explain this elevation. It is thought that immunological dysfunction also increases CAD risk in SLE patients. The study aimed to assess early endothelial changes in SLE Iraqi female patients w
... Show MoreUniversities are among spaces where it's important to ensure thermal comfort in indoor spaces, improving the occupants' well-being and productivity. The problem of the research was to study appropriate glazing systems for the spaces of the University of Baghdad because glazing systems are one of the most important elements of the indoor environments, and it has a major impact on the thermal performance of buildings. Glass is one of the most seasoned materials that are most utilized in the design. Since it is a diaphanous material, it allows sunlight to enter the building, increasing the space's temperature, cooling loads, and energy consumption in summer. The research followed the experimental method by studying and
... Show More