Mercury is a heavy metal that is extremely toxic. There are three types of it: inorganic, organic, and elemental. Mercury in all its forms has been shown to have harmful effects on living things. It can multiply its concentration from lower to higher trophic levels and accumulate in the body's various tissues. Aquatic organisms bodies have been exposed to mercury mostly through various human activities. The largest source of mercury pollution in the air is thermal power plants that mostly use coal as fuel. It is carried to a body of water after being deposited on the ground surface from the air. The way it enters the food chain is through aquatic plants and animals. Mercury accumulations in the kidney, liver, gills, or gonadal tissues of species that are readily exposed and ingested in aquatic organisms environments. There are possible effects of mercury exposure at both acute and long-term levels. The length of time, the mode of exposure, and the dosage all affect how harmful a substance is. The current study provides information about the harmful effects of mercury in aquatic organisms environments. Even though significant mitigation measures and recommendations were implemented, this assessment provides a comprehensive account of mercury sources and emissions, as well as their destiny and movement across the various environmental compartments. Because of the existing mercury emissions and stability, eating fish still poses a major risk. Aquatic life may be toxically affected by mercury pollution in freshwater environments. Through the food chain, mercury buildup in aquatic organisms can also endanger human health. Aquatic creatures include macroinvertebrates and fish. which people ingest and put their health at serious risk. The effect of mercury on hydrocarbons and how it enters the food chain to reach humans has been identified.
Background The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreTool wear is a major problem in machining operations because the resulting material loss gradually changes of the machine tool. There many factors may leads to material loss like; friction, corrosion, and also it’s happened by rubbing during machining processes between the work piece and the tool. Dimensional accuracy of the work piece, and also the surface finish will be reducing by tool wear. It can also increase cutting force. In this study, we focused on the effect of the coating process on crater wear problems. Crater wear is caused by the flow between the chip and the rake face of the tool, whereas flank wear is caused by the contact between the tool and the work piece. In reducing crater wear, aluminum titanium nitride (AlTiN) u
... Show MoreBackground: Dental erosion is a common oral condition which results due to consumption of high caloric and low pH acidic food such as carbonated drinks and fruit juices. It is expected that these food types can cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. So, this study aimed to evaluate and compare the erosive potential effects of orange fruit juice and Miranda orange drink on the microhardness of an orthodontic composite material. Materials and methods: Thirty discs with a thickness of 2 mm and a diameter of 10 mm were prepared from orthodontic bonding composite. The prepared discs were equally divided into three groups (n=10). Microhardness analysis was carried out both prior to
... Show MoreIn vitro tests have been carried out to find out the efficacy of watery extracts of garlic Allium sativum and hot pepper Capsicum spp. against the trophozoites of Entamoeba histolytica cultivated in liver infusion agar media at 37 c . The doses of ( 0.01, 0.05 ,0.1, 0.5, 1 ml )of garlic and hot pepper watery extracts were added to certain number of E. histolotica trophozoits for exposure time of 24 hrs., the mortality percentage of trophozoites treated with garlic extract were ( 14.82 %, 31.05% ,46.16% , 64.29% , 92.7%) respectively , these percentages were very close to that obtained from the treatment with the hot peper extract which were (17.86%, 32% , 44% ,66.67% ,100%) respectively . Generally these results showed that the ga
... Show MoreThe adequacy of diagnostic tests, together with trichomoniasis associated clinical symptoms, were investigated in females suffering vaginitis, and they were referred to the Gynecology Department, Al-Yarmouk Teaching Hospital during the period December 2004 – June 2005. The total number of patients was 250 cases (age range: 18 - 52 years), and each patient was examined using a sterile speculum to obtain vaginal swabs for examination. The diagnosis with T. vaginalis was done in many methods. The direct methods included wet and stained (Leishman's stain) examinations and cultivation in different culture media (Kupferberg Trichomonas Broth Base;, Trichomonas Agar Base; TAB and Trichomonas Modified CPLM), while the indirect methods were serol
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show MoreMicroalgae have been used widely in bioremediation processes to degrade or adsorb toxic dyes. Here, we evaluated the decolorization efficiency of Chlorella vulgaris and Nostoc paludosum against two toxic dyes, crystal violet (CV) and malachite green (MG). Furthermore, the effect of CV and MG dyes on the metabolic profiling of the studied algae has been investigated. The data showed that C. vulgaris was most efficient in decolorization of CV and MG: the highest percentage of decolorization was 93.55% in case of MG, while CV decolorization percentage was 62.98%. N. paludosum decolorized MG dye by 77.6%, and the decolorization percentage of CV was 35.1%. Metabolic profiling of
... Show More