Mercury is a heavy metal that is extremely toxic. There are three types of it: inorganic, organic, and elemental. Mercury in all its forms has been shown to have harmful effects on living things. It can multiply its concentration from lower to higher trophic levels and accumulate in the body's various tissues. Aquatic organisms bodies have been exposed to mercury mostly through various human activities. The largest source of mercury pollution in the air is thermal power plants that mostly use coal as fuel. It is carried to a body of water after being deposited on the ground surface from the air. The way it enters the food chain is through aquatic plants and animals. Mercury accumulations in the kidney, liver, gills, or gonadal tissues of species that are readily exposed and ingested in aquatic organisms environments. There are possible effects of mercury exposure at both acute and long-term levels. The length of time, the mode of exposure, and the dosage all affect how harmful a substance is. The current study provides information about the harmful effects of mercury in aquatic organisms environments. Even though significant mitigation measures and recommendations were implemented, this assessment provides a comprehensive account of mercury sources and emissions, as well as their destiny and movement across the various environmental compartments. Because of the existing mercury emissions and stability, eating fish still poses a major risk. Aquatic life may be toxically affected by mercury pollution in freshwater environments. Through the food chain, mercury buildup in aquatic organisms can also endanger human health. Aquatic creatures include macroinvertebrates and fish. which people ingest and put their health at serious risk. The effect of mercury on hydrocarbons and how it enters the food chain to reach humans has been identified.
A two-year study (harvest years 2019 and 2020) was conducted to investigate the effect of a commercially available biofertilizer, in combination with variable nitrogen (N) rate, on bread baking quality and agronomic traits in hard winter wheat grown in conventional (CONV) and organic (ORG) farming systems in Kentucky, USA. The hard red winter wheat cultivar ‘Vision 45’ was used with three N rates (44, 89.6 and 134.5 kg/ha as Low, Med and High, respectively) and three biofertilizer spray regimes (no spray, one spray and two sprays). All traits measured were significantly affected by the agricultural production system (CONV or ORG) and N rate, although trends in their interactions were inconsistent between years. In Y2, yield was
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
The necessity of addressing global economic prosperity has garnered significant attention from recent studies and policymakers. This article analyses the effects of the digital economy, business synergies, and trade policies on the economic prosperity of China and India. The study examines the impact of political support on the digital economy, business synergies, trade policies, and global economic prosperity in China and India. The study collects data from prominent economists in India and China using questionnaires. The article utilised the SPSS-AMOS software to analyse the relationship between variables. The results showed that the digital economy, business synergies, and trade policies are positively linked to global economic prosperit
... Show MoreNano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show More