Mercury is a heavy metal that is extremely toxic. There are three types of it: inorganic, organic, and elemental. Mercury in all its forms has been shown to have harmful effects on living things. It can multiply its concentration from lower to higher trophic levels and accumulate in the body's various tissues. Aquatic organisms bodies have been exposed to mercury mostly through various human activities. The largest source of mercury pollution in the air is thermal power plants that mostly use coal as fuel. It is carried to a body of water after being deposited on the ground surface from the air. The way it enters the food chain is through aquatic plants and animals. Mercury accumulations in the kidney, liver, gills, or gonadal tissues of species that are readily exposed and ingested in aquatic organisms environments. There are possible effects of mercury exposure at both acute and long-term levels. The length of time, the mode of exposure, and the dosage all affect how harmful a substance is. The current study provides information about the harmful effects of mercury in aquatic organisms environments. Even though significant mitigation measures and recommendations were implemented, this assessment provides a comprehensive account of mercury sources and emissions, as well as their destiny and movement across the various environmental compartments. Because of the existing mercury emissions and stability, eating fish still poses a major risk. Aquatic life may be toxically affected by mercury pollution in freshwater environments. Through the food chain, mercury buildup in aquatic organisms can also endanger human health. Aquatic creatures include macroinvertebrates and fish. which people ingest and put their health at serious risk. The effect of mercury on hydrocarbons and how it enters the food chain to reach humans has been identified.
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show MoreRecently new and multiple concepts emerged in the sustainability issues ,which transformed into number of planning and designing policies and strategies that must be committed by the designers and the relevant trends in building ,regarding Iraq and the reality of industrial areas ,especially in Baghdad, which helped to sustain few of it & emerged another with bad reflect ,which for that made it clear the importance of implicating sustainable ecological planning and designing strategies provided by the concept of Eco-industrial parks and the concept of Ecotowns and the future potentials provided ,and the easiness of carrying it out which made it flexible and away to provide a base supported by it for rebuilding and rehabilitation and
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures. Keywords: pyrimidin-2-amine, acetyl isothiocyanate, complexes, Antimicrobial activity
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,
... Show MoreBackground: Vitamin D deficiency/ insufficiency is common in different age groups in both genders especially among pregnant women and neonates where it is associated with several adverse outcomes including preeclampsia and preterm delivery. Objectives: To assess the extent of vitamin D deficiency/ insufficiency among mothers and their neonates and some factors related to it and identify some adverse outcomes of the deficiency/ insufficiency on neonates (preterm birth and low birth weight). Subject and Methods: A cross-sectional study was conducted on 88 Iraqi pregnant women and neonates admitted to “Al-Elwiya teaching hospital for maternity” in Baghdad- Al-Rusafah from 1st of June 2019 to 31st of August 2019. Dat
... Show MoreThe division partitioning technique has been used to analyze the four electron systems into six-pairs electronic wave functions for ( for the Beryllium atom in its excited state (1s2 2s 3s ) and like ions ( B+1 ,C+2 ) using Hartree-Fock wave functions . The aim of this work is to study atomic scattering form factor f(s) for and nuclear magnetic shielding constant. The results are obtained numerically by using the computer software (Mathcad).