The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrients as possible per unit of land area. The energy required to harvest corn silage is affected by many factors, including crop moisture, cutting lengths, particle size distribution, etc. This requires understanding the energy requirements of the harvesters used in the process. Using micro-sensors, the feed rate into corn silage harvesters is measured based on load cell data. This method helps in understanding the energy consumption and efficiency of the harvester during the feeding process, leading to more efficient and productive operations. On the other hand, artificial intelligence techniques are used to measure core size and cutting length to control machining parameters. We conclude from this review that precision agriculture techniques help farmers understand the efficiency of corn silage harvesters and know silage yield and quality, which helps them make informed decisions regarding energy use and thus obtain high productivity.
Aim To develop a low-density polyethylene–hydroxyapatite (HA-PE) composite with properties tailored to function as a potential root canal filling material. Methodology Hydroxyapatite and polyethylene mixed with strontium oxide as a radiopacifier were extruded from a single screw extruder fitted with an appropriate die to form fibres. The composition of the composite was optimized with clinical handling and placement in the canal being the prime consideration. The fibres were characterized using infrared spectroscopy (FTIR), and their thermal properties determined using differential scanning calorimetry (DSC). The tensile strength and elastic modulus of the composite fibres and gutta-percha were compared, dry and after 1 month storage in
... Show MoreThis study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formul
... Show MoreInternet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader u
... Show MoreDue to the development that occurs in the technologies of information system many techniques was introduced and played important role in the connection between machines and peoples through internet, also it used to control and monitor of machines, these technologies called cloud computing and Internet of Things. With the replacement of computing resources with manufacturing resources cloud computing named converted into cloud manufacturing.
In this research cloud computing was used in the field of manufacturing to automate the process of selecting G-Code that Computer Numerical Control machine work it, this process was applied by the using of this machine with Radio Frequency Identification and a AWS Cloud services and some of py
... Show MoreIsradipine belong to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is used in the treatment of hypertension, angina pectoris, in addition to Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, therefore, oral bio-availability will be approximately15 to 24 %.
The aim of this study was to formulate and optimize a stable nanoparticles of a highly hydrophobic drug, isradipine by anti-solvent microprecipitation Method to achieve the higher in vitro dissolution rate, so that it will be absorbed by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism&nbs
... Show More
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |