The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrients as possible per unit of land area. The energy required to harvest corn silage is affected by many factors, including crop moisture, cutting lengths, particle size distribution, etc. This requires understanding the energy requirements of the harvesters used in the process. Using micro-sensors, the feed rate into corn silage harvesters is measured based on load cell data. This method helps in understanding the energy consumption and efficiency of the harvester during the feeding process, leading to more efficient and productive operations. On the other hand, artificial intelligence techniques are used to measure core size and cutting length to control machining parameters. We conclude from this review that precision agriculture techniques help farmers understand the efficiency of corn silage harvesters and know silage yield and quality, which helps them make informed decisions regarding energy use and thus obtain high productivity.
The experiment was carried out in the spring season of 2017 in the open fields of the College of Agricultural Engineering Sciences/University of Baghdad/Al-Jadriya camps in order to improve the growth and yield of potato plants resulting from the cultivation of true potato seeds of the hybrid BSS-295 by spraying with two organic nutrients. The experiment included two factors: First one was spraying with Megafol nutrient at concentrations 0, 1, 2 and 4 ml l-1 and the second was spraying with Algazone nutrient at concentrations 0, 1.5 and 3 ml l-1, the experiment was applied according to the complete randomized block design with three replicatio
Corrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
The study focused on explaining urban expansion and sustainable development of urban land and explaining the role of population expansion in Al Hillah city, Al Hillah city in the center of Babylion Governorate located. The study relied on analyzing the population data of the city of Al Hillah for a period of time (22 years) for the period (2000-2022). This data was analyzed and its role in planning and designing residential areas and neighborhoods in the Al Hillah city was analyzed based on the standards of urban planning and sustainable growth of cities. Landsat 5TM was used in the investigation, Landsat 8OLI satellite data to retrieve the NDVI, NDBI, and NDWI. The findings showed th
Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Liquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreA faunistic review of the genus Chaitophorus Koch, 1854, including four species in Iraq is given; the distribution data of each species and their hosts have been recorded. In this investigation the poplar leaf aphid Ch. populialbae (Boyer de Fonscolombe, 1841) is recorded here for the first time in Iraq on popular trees Populus euphratica Oliv. during the period from November 2016 to April 2017 in Baghdad province.
A brief description for apterous viviparous female of this species is given; and a key to the species of the genus Chaitophorus is constricted.
Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the method To address a problem and method To address a problem , In this research a comparisons are employed between the biased method and unbiased method with Bayesian using Gamma distribution method addition to Ordinary Least Square metho
... Show More
