Active learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consisting of 99 students. The experimental group comprised 33 students from division (B) who were taught according to the first proposed strategy, while the second experimental group, represented by division (A), and also consisted of 33 students. The control group, made up of 33 students from division (C), was taught using the usual method. Two tools have been prepared: an achievement test with 40 items and a measure of social intelligence consisting of 20 items. The research results indicated that the experimental groups, which utilized the first and second proposed strategies based on active learning, outperformed the control group. As a result, several conclusions, recommendations, and proposals were made.
The tourism industry has undergone exponential transformation, reshaped by online travel agencies (OTAs), shifting consumer preferences, and technological advancements. Established OTAs like TripAdvisor and Travelocity face pressures to adapt their strategies to capitalize on these disruptive landscape changes. This research involves a comparative analysis examining the key challenges confronting TripAdvisor and Travelocity, with a focus on opportunities to leverage artificial intelligence (AI) in enhancing personalization and the traveler experience. The study utilizes publicly available data on the companies and academic literature on AI innovation diffusion. Findings reveal that while TripAdvisor has actively developed AI-based trip plan
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreIn this work, the effects of solvent properties on the characteristics of absorption and fluorescence for two laser dyes was studied. Dyes used in this work include Coumarin 5400 and DCM, while the solvents include ethanol, methanol, acetone, propanol and chloroform. Coumarin 5400 dye shows sharp fluorescence peaks in the green band of visible region while the DCM dye shows relatively wide band within 590-630 nm. Therefore, the selection of any dye for random gain medium applications should be performed after determining the most appropriate solvent as the optimum fluorescence characteristics are obtained.
Abstract
The Research Includes Two Variables : First , Academic Accreditation with his dimensions ( Educational Context , Educational Inputs , Educational Process , Educational Outputs , Feedback ) , And The Second : Strategic Performance With His dimensions ( Financing , Satisfaction Stakeholders , Internal Processes , Learning And Growth ) , The Research Highlights On The Academic Accreditation System Which Is Considered A Major And Important Systems Can Through Which Administration Of Activities And Programs Institutions Of Higher Education , As This research aims to determine his relationship And The Extent Of Its Effect In The Strategic Performance , And It Includes The Research C
... Show MoreIn this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.