Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.
The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta method (RK4), which gives very
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
A Modified version of the Generlized standard addition method ( GSAM) was developed. This modified version was used for the quantitative determination of arginine (Arg) and glycine ( Gly) in arginine acetyl salicylate – glycine complex . According to this method two linear equations were solved to obtain the amounts of (Arg) and (Gly). The first equation was obtained by spectrophotometic measurement of the total absorbance of (Arg) and (Gly) colored complex with ninhydrin . The second equation was obtained by measuring the total acid consumed by total amino groups of (Arg) and ( Gly). The titration was carried out in non- aqueous media using perchloric acid in glacial acetic acid as a titrant. The developed metho
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
Plantation of humic acid nanoparticles on the inert sand through simple impregnation to obtain the permeable reactive barrier (PRB) for treating of groundwater contaminated with copper and cadmium ions. The humic acid was extracted from sewage sludge which is byproduct of the wastewater treatment plant; so, this considers an application of sustainable development. Batch tests signified that the coated sand by humic acid (CSHA) had removal efficiencies exceeded 98 % at contact time, sorbent dosage, and initial pH of 1 h, 0.25 g/50 mL and 7, respectively for 10 mg/L initial concentration and 200 rpm agitation speed. Results proved that physicosorption was the predominant mechanism for metals-CSHA interaction because the sorption data followed
... Show MoreThe current work aims to evaluate the association between genetic mutations in thymidylate synthetase (
In this work , an effective procedure of Box-Behnken based-ANN (Artificial Neural Network) and GA (Genetic Algorithm) has been utilized for finding the optimum conditions of wt.% of doping elements (Ce,Y, and Ge) doped-aluminizing-chromizing of Incoloy 800H . ANN and Box-Behnken design method have been implanted for minimizing hot corrosion rate kp (10-12g2.cm-4.s-1) in Incoloy 800H at 900oC . ANN was used for estimating the predicted values of hot corrosion rate kp (10-12g2.cm-4.s-1) . The optimal wt.% of doping elements combination to obtain minimum hot corrosion rate was calculated using genetic alg
... Show MoreAbstract
In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invas
... Show More