Preferred Language
Articles
/
pBf1CpIBVTCNdQwCLJ2q
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.

Scopus Crossref
View Publication
Publication Date
Sat Oct 03 2020
Journal Name
International Journal Of Pharmaceutical Research
Serum Afamin As A Novel Biomarker for NonAlcoholic Fatty Liver Disease as A Complication of Hypothyroidism in Iraqi Patients.
...Show More Authors

Afamin, which is a human plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome. Afamin concentration have been proposed to have a significant role as a predictor of metabolic disorders. Since NAFLD is associated with metabolic risk factors, e.g., dyslipidemia, insulin resistance and visceral obesity, it is considered as the hepatic manifestation of the metabolic syndrome. The objective of this study is to determine Afamin levels in hypothyroid patients with and without fatty liver disease and compare the results with controls. Also to study the relationship of Afamin level with the Anthropometric and Clinical Features (Age, Gender, BMI and Duration of Hypothyroidism) , Serum

... Show More
Publication Date
Thu May 01 2025
Journal Name
Process Safety And Environmental Protection
Electromembrane extraction of Cadmium (II) using a novel design of electrochemical cell with a flat sheet supported liquid membrane
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jun 28 2023
Journal Name
The Iraqi Journal Of Veterinary Medicine
Haemoglobin Epsilon as a Biomarker for the Molecular Detection of Canine ‎Lymphoma
...Show More Authors

Lymphoma is a cancer arising from B or T lymphocytes that are central immune system ‎components. It is one of the three most common cancers encountered in the canine; ‎lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, ‎such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of ‎canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still ‎crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic ‎conditions and to improve decision-making around treating and what treatment type to use. ‎This study aimed to evaluate a potential novel biomarker related to iron metabolism,

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (29)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Cpwr
Development of a workforce sustainability model for construction
...Show More Authors

Publication Date
Fri Sep 30 2022
Journal Name
College Of Islamic Sciences
Historical development of Islamic jurisprudence - Develop a model
...Show More Authors

 

       Praise be to God, and prayers and peace be upon our master Muhammad, the Messenger of God, and upon his family, companions, and those who are guided by his guidance.

Then:

       Our Islamic jurisprudence and its basic principles are fixed, namely: the Noble Qur’an, then the Prophet’s Sunnah, then consensus, then analogy. However, it is characteristic of what makes it developed to meet the requirements of renewed life, including: sent interests, custom, approval, blocking pretexts, changing times. That is why it went through different stages, growth, brilliance, stagnation and endowment; Therefore, many scholars of Islamic jurisprudence divided its stages into four sections: the stage of inf

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (2)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Oct 07 2019
Journal Name
Construction Innovation
A hybrid conceptual model for BIM in FM
...Show More Authors
Purpose

The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.

Design/methodology/approach
... Show More
View Publication
Scopus (33)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Synthesis and Characterization of Some Novel Oxazine, Thiazine and Pyrazol Derivatives
...Show More Authors

In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.

View Publication Preview PDF
Crossref