Preferred Language
Articles
/
pBf1CpIBVTCNdQwCLJ2q
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.

Scopus Crossref
View Publication
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Suggested Model for auditing the performance of municipal institutions to verify the services provided
...Show More Authors

The services provided by the municipal institutions of the basic things needed by the man in his daily life and the evolution of cities basically depends on these services and therefore has paid most of the world's attention to this vital facility and give him the biggest concern for the welfare of the citizens, as is the research problem that there is no program scrutiny to evaluate the performance of municipal institutions contribute to measuring the efficiency and effectiveness of the services provided and was based on research on the premise that the preparation of the existence of audit program to evaluate the performance of municipal institutions contribute to measuring the efficiency and effectiveness of services provided has reac

... Show More
View Publication
Crossref
Publication Date
Sat Nov 12 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The possibility of applying the PATROL model to assess financial performance in Iraqi banks
...Show More Authors

The aim of the research is to identify the suitability of a patrol model in evaluating the financial performance of Iraqi banks. The financial reports of five Iraqi commercial banks were approved as a sample for research for the period from 2015 to 2020. The most common financial ratios were adopted for the purpose of measuring the five elements of the model, which are capital adequacy, profitability, credit risk, bankal efficiency and liquidity. The results showed the possibility of using the PATROL model in evaluating the performance of Iraqi banks, as it gave a realistic image of the reality of Iraqi banks in terms of high capital adequacy index and high liquidity, as well as fluctuation in profitability index, not to mention the prob

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Multi-level model of the factors that affect the escalation of dust in Iraq
...Show More Authors

In this research The study of Multi-level  model (partial pooling model) we consider The partial pooling model which is one Multi-level  models and one of  the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly  among the stations in Iraq. We use Akaik′s Informa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 28 2015
Journal Name
Journal Of Mathematics And System Science
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
...Show More Authors

Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
PHYSICAL MODEL OF KEROSENE PLUME MIGRATION IN AN UNSATURATED ZONE OF THE SANDY SOIL
...Show More Authors

Physical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Distinguishing Shapes of Breast Cancer Masses in Ultrasound Images by Using Logistic Regression Model
...Show More Authors

The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Using the Logistic Regression Model in Studding the Assistant Factors to Diagnose Bladder Cancer
...Show More Authors

The cancer is one of the biggest health problems that facing the world . And  the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 01 2025
Journal Name
Iet Conference Proceedings
Spatial quantile autoregressive model with application to poverty rates in the districts of Iraq
...Show More Authors

This research aims to provide insight into the Spatial Autoregressive Quantile Regression model (SARQR), which is more general than the Spatial Autoregressive model (SAR) and Quantile Regression model (QR) by integrating aspects of both. Since Bayesian approaches may produce reliable estimates of parameter and overcome the problems that standard estimating techniques, hence, in this model (SARQR), they were used to estimate the parameters. Bayesian inference was carried out using Markov Chain Monte Carlo (MCMC) techniques. Several criteria were used in comparison, such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R^2). The application was devoted on dataset of poverty rates acro

... Show More
View Publication Preview PDF
Crossref