Preferred Language
Articles
/
pBf1CpIBVTCNdQwCLJ2q
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.

Scopus Crossref
View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra</p> ... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Sat Aug 31 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Credit Card Fraud Detection Using an Autoencoder Model with New Loss Function
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jul 30 2024
Journal Name
Iraqi Journal Of Science
Frame-Based Change Detection Using Histogram and Threshold to Separate Moving Objects from Dynamic Background
...Show More Authors

      Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Ecti Transactions On Computer And Information Technology
Diagnosis of COVID-19 Infection via Association Rules of Cough Encoding
...Show More Authors

Article information: COVID-19 has roused the scientic community, prompting calls for immediate solutions to avoid the infection or at least reduce the virus's spread. Despite the availability of several licensed vaccinations to boost human immunity against the disease, various mutated strains of the virus continue to emerge, posing a danger to the vaccine's ecacy against new mutations. As a result, the importance of the early detection of COVID-19 infection becomes evident. Cough is a prevalent symptom in all COVID-19 mutations. Unfortunately, coughing can be a symptom of various of diseases, including pneumonia and inuenza. Thus, identifying the coughing behavior might help clinicians diagnose the COVID-19 infection earlier and distinguish

... Show More
Preview PDF
Scopus
Publication Date
Sun Jan 03 2016
Journal Name
Journal Of Educational And Psychological Researches
Encoding errors in reading the first grade of primary (analytical study)
...Show More Authors

    Aims current research to identify the mistakes coding contained in the reading first grade. Encoding knew that he had failed in Retrieval or identifying information, the researcher diagnosis of mistakes and presented to a group of teachers first grade and they have an appropriate adjustment and using the percentage shows that the agreement on the mistakes ratio and adjusted researcher recommended a set of proposals and recommendations can work out the future for the advancement of scientific level

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Computer Sciences And Informatics
Edge Detection Methods: A Review
...Show More Authors

This article studies a comprehensive methods of edge detection and algorithms in digital images which is reflected a basic process in the field of image processing and analysis. The purpose of edge detection technique is discovering the borders that distinct diverse areas of an image, which donates to refining the understanding of the image contents and extracting structural information. The article starts by clarifying the idea of an edge and its importance in image analysis and studying the most noticeable edge detection methods utilized in this field, (e.g. Sobel, Prewitt, and Canny filters), besides other schemes based on distinguishing unexpected modifications in light intensity and color gradation. The research as well discuss

... Show More
View Publication
Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayesian and non-Bayesian estimation of the lomax model based on upper record values under weighted LINEX loss function
...Show More Authors

In this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.

View Publication
Scopus (9)
Scopus
Publication Date
Tue Feb 14 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effect of Educational Program Based on the (Guttmann) Model for Developing Awareness and Emotional Experience among University Students
...Show More Authors

Abstract

The aim of the research is to identify the level of awareness and emotional experience among university students and to identify the effect of the educational program based on (Guttmann) model for developing awareness and emotional experience among university students by verifying the validity of the following zero hypotheses: 1) There are no statistically significant differences in the development of awareness and emotional experience among university students at the level of (0.05) between the mean scores of the experimental group in the pre and post-tests. 2) There are no statistically significant differences in the development of awareness and emotional experience among university students at the lev

... Show More
View Publication Preview PDF