Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.
In this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.
This research include building mathematical models for aggregating planning and shorting planning by using integer programming technique for planning master production scheduling in order to control on the operating production for manufacturing companies to achieve their objectives of increasing the efficiency of utilizing resources and reduce storage and improving customers service through deliver in the actual dates and reducing delays.
In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreDue to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula
... Show MoreThe current research aims to recognize the exploratory and confirmatory factorial structure of the test-wiseness scale on a sample of Hama University students, using the descriptive method. Thus, the sample consists of (472) male and female students from the faculties of the University of Hama. Besides, Abu Hashem’s 50 item test-wiseness scale (2008) has been used. The validity and reliability of the items of the scale have also been verified, and six items have been deleted accordingly. The results of the exploratory factor analysis of the first degree have shown the presence of the following five acceptable factors: (exam preparation, test time management, question paper handling, answer sheet handling, and revision). Moreover,
... Show MoreThe erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing
... Show MoreIn this work Study effect of annealing temperature on the Structure
of a-Se and electrical properties of a-Se/c-Si hetrojunction have been
studied.The hetrojunction fabricated by deposition of a-Se film on c-
Si using thermal evaporation.
Electrical properties of a-Se/ c-Si heterojunction include I-V
characteristics, in dark at different annealing temperature and C-V
characteristics are considered in the present work.
C-V characteristics suggested that the fabricated diode was
abrupt type, built in potential determined by extrapolation from
1/C2-V curve. The built - in potential (Vbi) for the Se/ Si System
was found to be increase from 1.21 to 1.62eV with increasing of
annealing temperature