The structural properties of the CuO nanopowder oxide prepared reflux technique
without any templates or surfactant, using copper nitrate hydrate (Cu(NO)3 3H2O) in deionized
water with aqueous ammonia solution are reported. The Xrd analysis data and processing in origin
pro program used to get FWHM and integral width to study the effect of different synthesis times
was studied on the structural properties. It was found that values of crystal sizes are 17.274nm,
17.746nm, and 18.560nm, the size of nanoparticles is determined by Halder-Wagner, and 15.796
nm, 15.851nm, and 16.52nm, were calculated by Size-Strain Plot (SSP) method. The Sample was
considered to determine physical and microstructural paramete
In this study, the effect of the annealing temperature on the material properties and the structural properties of cuprous oxide was studied in order to investigate how the annealing temperature affects the material properties, and the temperature varied between 200℃, 300℃, 400℃ and 500 ℃ and was unannealed. The physical properties of the cuprous oxide were measured by X-ray diffraction (XRD). The XRD patterns showed that the Cu2O nanoparticles were highly pure, crystalline, and nano-sized. From the XRD results, we found the pure cuprite (Cu2O) phase. The values of crystal size were discovered and calculated by the Halder-Wagner and Size-Strain Plot (SSP) methods, respectively. The crystallite size increased
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreIn this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreSb-dopedAgInSe2 (AIS: 3%Sb)thin films were synthesized by thermal evaporation with a vacuum of 7*10-6torr on glass with (400+20) nm thickness. X-ray diffraction was used to show that Sb atoms were successfully incorporated into the AgInSe2 lattice. Then the thin films are annealed in air at 573 K. XRD shows that thin films AIS pure, AIS: 3%Sb and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112).raise the crystallinity degree. The Absorption spectra revealed that the average Absorption was more than 60% at the wavelength range of 400–700 nm. UV/Visible measure shows the lowering in energy gap to 1.4 eV forAIS: 3%Sb at 573 Kt his energy gap making these samples suitable for p
... Show MoreThe influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.
... Show More