Mixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on the reported results, it may be concluded that.The results showed that the deprotonated ligand(nthranilc acid ) to anthranilate ion (A-) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (−COO−), and the nitrogen atom of the amine group (-NH2), where the Tributylphosphine coordinated as a monodentate through the phosphor atom.
In this research, new compounds were synthesized via the reaction of dichloroacetic acid with two moles of piperidine. The novel acid 1 was converted to its ester 2. Acid hydrizide 3 was prepared by the reaction of hydrazine hydrate with new ester 2, which was later used to prepare derivatives of Schiff bases 4-13. In the last step, Schiff bases and thioglycolic acid were reacted to give thiazolidine derivatives 14-23. All these compounds were diagnosed using melting points, FTIR, 1HNMR and mass spectroscopy. Scheme 1 shows all the synthesized compounds' reaction steps and structures. Keywords: Thiazolidine; Schiff bases; biological activity; piperidine; dichloroacetic acid.
Purpose: Studying the activity of acid phosphatase, which is the marker of lysosomal activity in the mammary glands of rats at different stages of the physiological maturation [virgih, pregnancy, lactation and Post lactation] Methods: Forty, female, albino rats were used in this study. They were divided into four groups according to their physiological states [virgin, pregnancy, lactation and post lactation]. The mammary glands, after suitable fixation and sectioning, were employed for routine haematoxylin and eosin stain and for acid phosphatase demonstration Results: Acid phosphatase activity was weakly diffuse in the secretory tubules of virgin rats, the diffuse and granular activity of this enzyme was increased during pregnancy in the s
... Show MoreBackground: Obesity has become one of the most important public heath problems all over the world.An epidemic of obesity is affecting children and adolescents across the developed and developing countries in recent years. As the prevalence of obesity increased, so did the prevalence of co morbidities like metabolic and endocrine diseases.Objectives: To overview obesity clinical features and the prevalence of associated co morbidities in children and adolescents attended the obesity researches and therapy center in Alkindy medical collage.Type of study: This is a cohort observational studyMethods : Obese child and adolescents aged 4-15year attended the obesity research and therapy unit in AL Kindy medical collage from the 1st of September
... Show MoreNew metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes
... Show More|
Background: Essential oils extracted from plants have been widely used in antimicrobial activity, particularly the Callistemon viminalis, with a high number of essential oils extracted. Objectives: To identify the chemical composition of essential oil derived from Callistemon viminalis and evaluates its antimicrobial activity against selected bacterial and fungal strains. Subjects and methods: During the study, the antimicrobial activity of different selected essential oils on some bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, and Streptococcus pneumonia) and fungus (Candida albicans) was evalua |
A new ligand (H4L) and its complexes with (CoII, NiII, CuII and PdII). This ligand was prepared in two steps, in the first step a solution of terephthaldehyde in methanol reacted under refluxe with 1,2-phenylenediamine to give precursore compound which reacted in the second step with 2,4- dihydroxybenzaldehyde to give the ligand. The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [FT-IR, UV-vis, 1HNMR, HPLC and atomic absorption], chloride contant in addition to conductivity measurement. The stability constant K and Gibbs free energy ∆G were calculated for [[Ni2(H2L)Cl2], [Cu2(H2L)Cl2] complexes using spectrophoto
... Show MoreNewly 4-amino-1,2,4-triazole-3-thione ring 2 was formed at position six of 2-methylphenol from the reaction of 6-(5-thio1,3,4-oxadiazol-2-yl)-2-methylphenol 1 with hydrazine hydrochloride in the presence of anhydrase sodium acetate. Seven newly fused heterocyclic compounds were synthesized from compound 2. First fused heterocyclic was 6-(6-(3,5-di-tertbutyl-4-hydroxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)-2-methylphenol 3 synthesized from reaction compound 2 with 3,5-di-tert-butyl-4-hydroxybenzoic acid in POCl3. Reaction compound 2 with bromophencylbromide afford 6-(6-(4-bromophenyl)-5H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazin-3-yl)-2-methylphenol 4. 6-(6-thio-1,7a-dihydro-[1,2,4] triazolo[3,4-b][1,3,4]-thiadiazol-3-yl)-2
... Show More