The formation, structural characterization of mixed ligand complexes of Co II, Zn II, Cd II and Hg II metal ions with the Schiff base ligand (Z)-3,4,5-trihydroxy-N'-(4-hydroxybenzylidene) benzohydrazide and 8-hydroxyquinolineare reported. Ligand and complexes were characterized by analytical and spectroscopic analyses including; FTIR, electronic and 1H, 13C-NMR spectroscopy, microanalysis, chloride content, thermal analysis, magnetic susceptibility and conductance. Physico-chemical techniques indicated the formation of complexes with fourcoordinated arrangement in the solid and solution state. Biological activity of the prepared ligand and their mixed complexes were screened for their antimicrobial activity against four bacterial species (Staphylococcus aureus and Bacillus subtitles (G+)), Enterobacter and Escherichia coli (G-)). Biological data showed that complexes become potentially more active against these tested bacteria compared with the free ligands
A new Schiff base of HL has been synthesized from amoxicillin drug and 4- Chlorobenzophenone. Cr (III), Fe (III), Co (II), Ni (II), Cu (II), Cd (II) and Hg (II) mixed ligands complexes of Schiff base and Nicotinamide. Diagnosis of synthesis ligand and its complexes are done by 1HNMR, 13CNMR and thermal analysis for HL ligand, FTIR, UV-visible, molar conductance, CHN analysis, magnetic susceptility and atomic absorption. Octahedral geometries have been suggested for all complexes. All compounds under study were tested antimicrobial activity against four type of bacteria such as Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus Bacillis subtilis in nutrient agar.
The compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreThe compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreIn this work, the preparation of new multidentate Schiff-base lig and and its metal complexes are described. The formation of the lig and{ 2,2`((5-methyl-1,3-phenylene)-bis-(oxy))-bis-N`(E`)-2- hydroxybenzylideneacetohydrazide}[H2L] was prepared from the reaction {2,2-((5-methyl-1,3-phenylene)-bis-(oxy))- di-(acetohydrazide)}[M]precursor and salicylaldehyde in a 1:2 mole ratio, respectively. The reaction of the lig and [H2L] with (Cr+3 , Mn+2 and Fe+2 )metal ions in a 1:2 (L:M) mole ratio. Ligand and complexes were characterised via spectroscopic analyses; [FT-IR, UV-Vis spectroscopy,(C.H.N) microanalysis, chloride content, thermal analysis(TG), electrospray mass, magnetic susceptibility and conductivity measurements. The characterisation d
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [dipotassium sodium7-((E)-2-(2-((Z)-1-carboxylatoethylideneamino)thiazol-4-yl)-2 (carboxylatemethoxyimino) acet amido)-8-oxo-3-vinyl-5- thia-1-azabicyclo[4.2.0] oct-2- ene-2- carboxylate] [Nak2L], from the reaction of cefixime with sodium pyruvet to produce the ligand [Nak2L], the reaction was carried out in methanol as a solvent under reflux. The prepared ligand [Nak2L] which was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [Nak2L] was used as a primary ligand while 8-hydroxy quinoline [Q] was used as a secondary ligand with metal ion M(Π).Where
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [dipotassium sodium7-((E)-2-(2-((Z)-1-carboxylatoethylideneamino)thiazol-4-yl)-2 (carboxylatemethoxyimino) acet amido)-8-oxo-3-vinyl-5- thia-1-azabicyclo[4.2.0] oct-2- ene-2- carboxylate] [Nak2L], from the reaction of cefixime with sodium pyruvet to produce the ligand [Nak2L], the reaction was carried out in methanol as a solvent under reflux. The prepared ligand [Nak2L] which was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [Nak2L] was used as a primary ligand while 8-hydroxy quinoline [Q] was used as a secondary ligand with metal ion M(?).Where M(?) =
... Show MoreThe ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
The ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
The new polydentate Schiff-base oxime (1E,1`E)-2hydroxy-3-((E)-(2-((E)-2hydrxy3-((E)-(hydroxyimino)methyl)-5-methylbenzyldeneamino)ethylimino)methyl)-5methylbenzaldehyde oxime H4L and its binuclear metal complexes with Mn(II), Fe(II), Co(II) and Cu(II) are reported. The reaction of 2,6 diformyl–4–methyl phenol with hydroxyl amine hydrochloride in mole ratios of 1:1 gave the precursor (E)-2-hydroxy-3((hydroxyimino)methyl)-5-methylbenzaldehyde. Condensation reaction of precursor with ethylenediamine in mole ratios of 2:1 gave the new N4O2 Schiff-base oxime ligand H4L. Upon complex formation, the ligand behaves as a tribasic hexadantate species. The mode of bonding and overall geometry of the complexes were determi
... Show More