The objective of this research was to estimate the dose distribution delivered by radioactive gold nanoparticles (198 AuNPs or 199 AuNPs) to the tumor inside the human prostate as well as to normal tissues surrounding the tumor using the Monte-Carlo N-Particle code (MCNP-6.1. 1 code). Background Radioactive gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated to treat prostate cancer in animals. In order to use them as a new therapeutic modality to treat human prostate cancer, accurate radiation dosimetry simulations are required to estimate the energy deposition in the tumor and surrounding tissue and to establish the course of therapy for the patient. Materials and methods A simple geometrical
... Show MoreNew heterocyclic derivatives of quinoline are reported. Reaction of quinoline-2-thiol 4 with hydrazine hydrate gave 2-hydrazionoquinoline 5. Treatment of 5 with CS2 in pyridine afforded 1,2,4-triazolo-[4,3-a]- quinolin-1-2H-thione 6, whereas the reaction of 5 with carboxylic acids namely formic acid or acetic acid, yielded the 1,2,4-triazol-[4,3-a]-quinolin 7 or 5-methyl-1,2,4-triazolo [4,3-a]-quinoline 8 through ring closure. Diazotization of 5 under acidic conditions produced the fused tetrazole compound 9, tetrzolo-[1,5-a]- quinoline. Moreover, treatment of 5 with active methlyene compounds gave two pyrazole derivatives 10 and 11. Azomethines 12a-e were prepared through condensation of 5 with aromatic aldehydes or ketones.
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreThe current work is characterized by simplicity, accuracy and high sensitivity Dispersive liquid - Liquid Micro Extraction (DLLME). The method was developed to determine Telmesartan (TEL) and Irbesartan (IRB) in the standard and pharmaceutical composition. Telmesartan and Irbesartan are separated prior to treatment with Eriochrom black T as a reagent and formation ion pair reaction dye. The analytical results of DLLME method for linearity range (0.2- 6.0) mg /L for both drugs, molar absorptivity were (1.67 × 105- 5.6 × 105) L/ mole. cm, limit of detection were (0.0242and0.0238), Limit of quantification were (0.0821and0.0711), the Distribution coefficient were
... Show MoreAbstract
The problem with the search at the reduction of adoption of new products, as there are three hypotheses of research have been formulated , the first one is no significant correlation between the religious and differences to customers and adopt new products, and This Study Aimed To Investigate The Relationship Between Religious differences for customers And New Products Adoption, Applied On Arab Mall Commercial Customers/ Egypt, an Analytical Model Is Developed As Guideline To Test The The Relationship Between Religious differences for customers And New Products Adoption, Aquantative Method With Deductive Approach Were Chosen In This Research . In Order To Collect Primary Data, A questionnaire Is
... Show More