This paper proposes a new method to tune a fractional order PID controller. This method utilizes both the analytic and numeric approach to determine the controller parameters. The control design specifications that must be achieved by the control system are gain crossover frequency, phase margin, and peak magnitude at the resonant frequency, where the latter is a new design specification suggested by this paper. These specifications results in three equations in five unknown variables. Assuming that certain relations exist between two variables and discretizing one of them, a performance index can be evaluated and the optimal controller parameters that minimize this performance index are selected. As a case study, a third order linear time invariant system is taken as a process to be controlled and the proposed method is applied to design the controller. The resultant control system exactly fulfills the control design specification, a feature that is laked in numerical design methods. Through matlab simulation, the step response of the closed loop system with the proposed controller and a conventional PID controller demonstrate the performance of the system in terms of time domain transient response specifications (rise time, overshoot, and settling time).
The perturbed equation of motion can be solved by using many numerical methods. Most of these solutions were inaccurate; the fourth order Adams-Bashforth method is a good numerical integration method, which was used in this research to study the variation of orbital elements under atmospheric drag influence. A satellite in a Low Earth Orbit (LEO), with altitude form perigee = 200 km, was selected during 1300 revolutions (84.23 days) and ASat / MSat value of 5.1 m2/ 900 kg. The equations of converting state vectors into orbital elements were applied. Also, various orbital elements were evaluated and analyzed. The results showed that, for the semi-major axis, eccentricity and inclination have a secula
... Show MoreThe aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point osculatory interpolation. The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems. A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additional flexibil
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additio
... Show MoreIn project management process, the objective is to define and develop a model for planning, scheduling, controlling, and monitoring different activities of a particular project. Time scheduling plays an important role in successful implementation of various activities and general outcome of project. In practice, various factors cause projects to suffer from time delay in accomplishing the activities. One important reason is imprecise knowledge about time duration of activities. This study addresses the problem of project scheduling in uncertain resource environments, which are defined by uncertain activity durations. The study presents a solution of the levelling and allocation problems for projects that have some uncertain ac
... Show MoreThe FSO technique depends on the compatibility of the optical path between the transmitter and the receiver (line-of-sight) to transmit data between two points. FSO system uses the light to provide optical Contact to send and receive various data. This study shows the design of a new optical system for the transmission of voice through free space at wavelengths (650,532,405) nm within point-point technology for specified distances. What distinguishes this work is the quality of the reflection-based modulation based on the Doppler phenomenon. Also, it is interested in studying the different attenuation conditions of the atmosphere at the wavelengths used, in addition to the attenuation caused by the
... Show MoreA new features extraction approach is presented based on mathematical form the modify soil ratio (MSR) and skewness for numerous environmental studies. This approach is involved the investigate on the separation of features using frequency band combination by ratio to estimate the quantity of these features, and it is exhibited a particular aspect to determine the shape of features according to the position of brightness values in a digital scenes, especially when the utilizing the skewness. In this research, the marginal probability density function G(MSR) derivation for the MSR index is corrected, that mentioned in several sources including the source (Aim et al.). This index can be used on original input features space for three diffe
... Show MoreObjective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show More