This paper proposes a new method to tune a fractional order PID controller. This method utilizes both the analytic and numeric approach to determine the controller parameters. The control design specifications that must be achieved by the control system are gain crossover frequency, phase margin, and peak magnitude at the resonant frequency, where the latter is a new design specification suggested by this paper. These specifications results in three equations in five unknown variables. Assuming that certain relations exist between two variables and discretizing one of them, a performance index can be evaluated and the optimal controller parameters that minimize this performance index are selected. As a case study, a third order linear time invariant system is taken as a process to be controlled and the proposed method is applied to design the controller. The resultant control system exactly fulfills the control design specification, a feature that is laked in numerical design methods. Through matlab simulation, the step response of the closed loop system with the proposed controller and a conventional PID controller demonstrate the performance of the system in terms of time domain transient response specifications (rise time, overshoot, and settling time).
The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detec
... Show MoreBackground: Joubert syndrome (JS) is a very rare autosomal recessive disorder characterized by agenesis of cerebellar vermis, abnormal eye movements, respiratory irregularities, and delayed generalized motor development. Retinal dystrophy and cystic kidneys may also be associated with this clinical syndrome. The importance of recognizing JS is related to the outcome and its potential complications. This syndrome is difficult to diagnose clinically because of its variable phenotype. Its neuroimaging hallmarks include the characteristic molar tooth sign and bat wing-shaped fourth ventricle
Maximum likelihood estimation method, uniformly minimum variance unbiased estimation method and minimum mean square error estimation, as classical estimation procedures, are frequently used for parameter estimation in statistics, which assuming the parameter is constant , while Bayes method assuming the parameter is random variable and hence the Bayes estimator is an estimator which minimize the Bayes risk for each value the random observable and for square error lose function the Bayes estimator is the posterior mean. It is well known that the Bayesian estimation is hardly used as a parameter estimation technique due to some difficulties to finding a prior distribution.
The interest of this paper is that
... Show MoreThe concept of transitional justice is newly emerging, as it was mainly associated with addressing issues of serious breaches and abuses of human rights during conflicts and situations resulting from violence and the use of force in societies that are in the process of democratization, as transitional justice aims primarily to restore civil peace and rebuild institutions The state needs multidimensional justice: a judicial system that achieves the rule of law, corrective restoration of the wounds of the past, and a distributive characteristic of the redistribution of wealth.
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show More