An experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the average drag estimated on the baseline car for different Reynolds numbers was (0.381) and the drag force was reduced by adding a spoiler and a slice diffuser to (4.45%, 1.5%) respectively, whereas the amount of drag reduction was (5.46%) when all drag reduction modifications were added together on the base car. No effect was noticed as vortex generators when added separately. The deviation in the drag coefficient from the real car testing was about (6.2%) and shows a very good agreements between the real car test and that of the wind tunnel test.
Medicines comprising fosfomycin are prescribed for urinary tract infections. These drugs are available for oral use as tromethamine and calcium, while fosfomycin-sodium and disodium are given for intravenous (IV) and intramuscular (IM). Many quantitative analytical methods have been reported to estimate Fosfomycin in blood, urine, plasma, serum, and pharmaceutical dosage formulations. Some techniques were spectrophotometric, mass spectrometry, gas chromatography, high-performance liquid chromatography, and electrochemical methods. Here we perform a rapid narrative review that discusses and comparison between them of various analytical methods for the determination of Fosfomycin-containing drugs.
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreUniversity campuses in Iraq are substantial energy consumers, with consumption increasing significantly during periods of high temperatures, underscoring the necessity to enhance their energy performance. Energy simulation tools offer valuable insights into evaluating and improving the energy efficiency of buildings. This study focuses on simulating passive architectural design for three selected buildings at Al-Khwarizmi College of Engineering (AKCOE) to examine the effectiveness of their cooling systems. DesignBuilder software was employed, and climatic data for a year in Baghdad was collected to assess the influence of passive architectural strategies on the thermal performance of the targeted buildings. The simulations revealed that the
... Show MoreThe research work is "The passive voice as a grammatical phenomenon in four selected textbooks". The research deals with the grammatical phenomenon passive in German. The research consists of two parts, the theoretical and the empirical part. The present research work is divided into 3 sections:
The first section includes the definition of passive, passive types, process passive, state passive, passive with modal verbs, and other types of passive. The second section provides illustrations of the four selected textbooks. The third chapter presents the passive voice in textbooks, namely German language teaching for foreigners by Dora Schulz and Heinz Griesbach, Delfin von Aufderstrasse H. and others, Em von Balme, M. and others and
... Show MoreSupport Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a
... Show MoreA new attempt is made to determine diosmin (DIO) in its pure form and in dietary supplements by using spectrophotometric flow injection analysis (FIA) assay method conjugated with batch method. The analysis was achieved depending on the oxidative coupling reaction with N, N-dimethyl-p-phenylenediamine (DMPD) to form a green dye which is measured at wavelength of 677 nm. The tested methods were found to be economical, delicate, precise and sturdy. The validation variables of the batch and FIA methods gave linearity in the determination range of DIO (1-35) μg/mL and (5-120) μg/mL demonstrated calibration graphs with linearity coefficient values of r2 =0.9989 and r2 =0.9991, respectively. Limits of quanti
... Show MoreIn this research, we dealt with the study of the Non-Homogeneous Poisson process, which is one of the most important statistical issues that have a role in scientific development as it is related to accidents that occur in reality, which are modeled according to Poisson’s operations, because the occurrence of this accident is related to time, whether with the change of time or its stability. In our research, this clarifies the Non-Homogeneous hemispheric process and the use of one of these models of processes, which is an exponentiated - Weibull model that contains three parameters (α, β, σ) as a function to estimate the time rate of occurrence of earthquakes in Erbil Governorate, as the governorate is adjacent to two countr
... Show MorePermeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.
A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More