Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nitro group proceeds through direct pathway along with formation of several reaction intermediates. Most of these intermediaries reside in a significant well-depth in reference to the entrance channel. Central to the constructed mechanism is H-transfer steps from fcc and hcp hollow sites to the NO/–NH groups through modest reaction barriers. Our computed rate constant for the conversion of p-CNB correlates very well with the experimental finding (0.018 versus 0.033 s–1 at ∼500 K). Plotted species profiles via a simplified kinetics model confirms the experimentally reported high selectivity toward the formation of p-CAN at relatively low temperatures. It is hoped that thermokinetics parameters and mechanistic pathways provided herein will afford a molecular level understanding for γ-Mo2N-mediated conversion of halogenated nitrobenzenes into their corresponding nitroanilines; a process that entails significant industrial applications.
Isolation and identification fungi of Emericella nidulans and Aspergillus flavus from a pinkish and yellowish artificial clay, by using potato dextrose agar (PDA). Results revealed that E. nidulans was the best for degrading anthracene (92.3%) with maximum biomass production (3.7gm/l), compared to A. flavus with the rate of degradation (89%) and biomass production of (1.2gm/l), when methylene blue was used as redox indicator after incubating in a shaker incubator 120rpm at 30Co for 8days. Results indicated that E. nidulans has a high ability of anthracene degradation with the rate of (84%), while A. flavus showed the lower level with (77%) by using HPLC.
In this contribution, density functional theory-based calculations have been carried out to assess the electronic, photocatalytic and optical properties of Ce1-xTixO2 system. Ti incorporation leads to a decrease of Ce 4f states and enhancement of Ti 3d states in the bottom of conduction band. Furthermore, it was found that doping ceria with Ti-like transition metals could evidently shift the absorption of pure CeO2 towards higher wavelength range. These findings can provide some new insights for designing CeO2-based photocatalysts with high photocatalytic performance. To the best of our knowledge, this investigation calculates Mullikan’s charge transfer of Ce1-xTixO2 system for the first time. Charge transfer reveals an ionic bond between
... Show MoreThe bacteria Azotobacter Vinelandii was taken from a central research in Baghdad, The purification of alginic acid which produced from the bacteria by several steps starting with precipitation with isopropanol (3:1) v/v , Washing by ppt with 100ml of isopropanol : distilled water (3:1) v/v , then the ppt was dissolved in warm distilled water and dialysis against distilled water from 24 h/s . To Complete the purification , gel filtration chromatography was conducted on sephacryl s-100 column followed by ion – exchange chromatography . Using DEAE cellulose column . The molecular Weight of purified al ginic acid was higher than that of blue dextran 2000,It was more than (2) millions Dalton .<
... Show MoreIn this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show MoreMB Mahmood, BN Dhannoon
The effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: comp
This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show More