Preferred Language
Articles
/
pBYAs4oBVTCNdQwCI6MV
On Annihilator-Extending Modules

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus Crossref
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiprime Fuzzy Modules

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Publication Date
Thu Oct 16 2014
Journal Name
Journal Of Advances In Mathematics
View Publication Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Relationships between Relatively Cancellation Modules and Certain Types of Modules

Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.

Crossref
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Full Text Book Of Minar Congress4
RELATIONSHIP OF ESSENTIALLY SEMISMALL QUASI-DEDEKIND MODULES WITH SCALAR AND MULTIPLICATION MODULES

Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that

... Show More
Crossref
View Publication
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Relationship of Essentially Small Quasi-Dedekind Modules with Scalar and Multiplication Modules

Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Oral And Maxillofacial Surgery, Medicine, And Pathology
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
Scopus
View Publication Preview PDF
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Essential-small Projective Modules

In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.

View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
2-Quasi-prime modules

     We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever ,  and , then either  or .

Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.

Scopus Crossref
View Publication Preview PDF