Denture bases are fabricated routinely using Poly(methyl methacrylate) (PMMA) acrylic resin. Yet, it is commonly known for its major drawbacks such as insufficient strength and ductility. The purpose of this study was to improve the performance of PMMA acrylic resin as a denture base material by reinforcement with surface treated lithium disilicate glass ceramic powder. The ceramic powder was prepared by grinding and sieving IPS e.max CAD MT blocks. Then, the powder was surface treated with an organosilane coupling agent (TMSPM) and added to PMMA in amount of 1%, 3%, 5% and 7% by weight. Characterizations of the powder was done by particle size analysis, XRD and FTIR. Transverse strength, Impact strength, Shore D hardness and surface roughness were tested for the prepared composites and neat PMMA. Particle size analysis showed that the average particle diameter was 1.46 µm. XRD confirmed the microstructure of IPS e.max CAD MT. FTIR showed the presence of TMSPM functional groups in the powder after treatment and there was a chemical interaction between the treated powder and the PMMA after the addition. One-way ANOVA and Tukey’s HSD test showed that there was a highly significant increase (P < 0.01) in transverse strength, impact strength and hardness with non-significant increase in roughness for 1% group. The mean values of 1% group were 67.3 MPa for transverse strength, 5.21 kJ/m2 for impact strength, 89.8 for Shore D hardness and 1.22 µm for surface roughness. While for control group, mean values were 59.3 MPa for transverse strength, 3.74 kJ/m2 for impact strength, 87.1 for Shore D hardness and 1.1 µm for surface roughness. However, with higher amounts of powder, there was a highly significant decrease in transverse strength and increase in roughness which was considered undesirable. In conclusion, reinforcing PMMA denture base material with 1% lithium disilicate glass ceramic powder may have the potential for enhancing the clinical performance of this material.
Abstract
The target derivative are gentamicin linked with L-Val- L-Ala by an ester linkage. These were synthesized by esterification method, which included the reaction of -OH hydroxyl group on (carbon No.5) of gentamicin with the acid chloride of the corresponding dipeptide, The preparation of new derivative of gentamicin involved protected the primary & secondary amine groups of Gentamicin, by Ethylchloroformate (ECF) to give N-carbomethoxy Gentamicin which was used for further chemical synthesis involving the free hydroxyl groups.
Then prepared dipeptide (L-Val- L-Ala) by conventional solution method in present DCC & HoBt then reacted with thionyl
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreBackground: Imprelon® Biostar foils are new alternative tray material that has become increasingly popular because oftheir several advantages. Also, (Duran®) is another type of Biostar foils which is used in splint therapy. This study assessed some mechanical properties of these two types Biostar sheets in comparison with some types of acrylic resins used for construction of trays and splints. Materials and Methods: A total of 150 specimens were prepared, 30 specimens for each test, 10 for each group material in order to assess some mechanical properties of the Imprelon® Biostar foil (dimension stability, surface roughness and shear bond strength of Imprelon® materialto zinc oxide impression material) and compare them to that of the oth
... Show MoreLayer by layer development two features of pulsed laser deposition PLD, with a high kinetic energy and sharp instantaneous deposition rating. Layered films of polymer/metal/ceramic nanocomposites consisting of polystyrene PS(as substrate) , tin Sn and cadmium oxide CdO were deposited by PLD. Structure for layered samples were measured by XRD X ray diffraction, there were appearance of peaks which reflected to formation of new compounds result of reaction between layers. Particles size was calculated using two methods and it give nanoscale. Microstrain was also calculated and exhibited high value (0.01) for sample p/m.
In this research, the study effect of additive titanium dioxide powder (TiO2) as a lone composite ( Ep+TiO2) and a mixture of (TiO2) and silicon oxide (SiO2), ( Ep+ TiO2+SiO2)as a hybrid composite on the mechanical and physical properties for epoxy coating. Thescompsiteswere prepared by (Hand Lay- the molding) method. The samples were tested for compressive strength, surface hardness, modulus of elasticity, thermal conductivity and diffusion coefficient, from the results obtained showed improvement in mechanical properties after adding ceramic powders, as the alone composite (EP+ TiO2) had the highest compressive strength ( 53.738 ) ᴍPa, the hybrid composite ( EP+TiO2 +SiO2 ) had the
... Show MoreBackground: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and
... Show MoreThe aim of this work is to study the influence of the type of fiber glass –mat on fatigue behavior of composite material which is manufactured from polyester and E-glass (woven roving, chopped strand mat (CSM)) as a laminate with a constant fiber volume fraction (VF) of 33%. The results showed that the laminates reinforced with E-glass (woven roving) [0/90, ±45.0/90] and [0/90, CSM, 0/90] have lower fatigue strength than the laminates reinforced with E-glass [0/90]3,[CSM]3 and [CSM, 0/90, CSM] although they had different tensile strength; the best laminate was [0/90]3 .
Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreIn this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show More