The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested by ACI Committee 209 and inverted to equivalent temperature differences to be added algebraically to the temperature differences obtained from thermal analysis. Willam-Warnke model with five strength parameters is used in modeling of concrete material in which cracking and crushing behavior of concrete can be included. The ANSYS program was employed in a modified manner to perform the above analyses. A thick concrete slab of 1.5m in thickness and 10m in length was analyzed for different widths 2, 4, 8, and 10m to produce different aspect ratios (B/L) of 0.2, 0.4, 0.8, and 1.0 respectively. The results of the analyses show an increase in cracking tendency of mass concrete member as the aspect ratio of the same member is increased due to the effect of transverse base restraint. Accordingly, such effect cannot be ignored in the analysis of base restrained mass concrete structures subjected to temperature and drying shrinkage volume changes.
The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreA long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen
... Show MoreThe experiment was carried out in the green house of botanical garden belong to Department of Biology/College of Education for Pure Science- Ibn–al- Haitham/University of Baghdad, for the growth season 2015 using plastic pots. The experiment aimed to study the effect of two concentrations of sodium chloride (50, 100) mM.L-1 in addition to the control and four concentrations of kinetin (25, 50, 75, 100) mg.L-1 in addition to the control and the influence of application and non application of fertilizlizer NPKZn in the level 160 kg.h1- and their interactions on some growth parameters (fresh weight for both root and vegetative part, dry weight for leaves , value of secondary productivity, biomass duration for vegetative part and dry weight f
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
Tensile strength is a critical property of Hot Mix Asphalt (HMA) pavements and is closely related to distresses such as fatigue cracking. This study aims to evaluate methods for assessing fatigue cracking in Asphalt Concrete (AC) mixes. In order to achieve optimum density at different binder contents, the mixes were compressed using a gyratory compactor. Tensile strength was assessed using the Indirect Tensile (IDT) and Semi-Circular Bend (SCB) tests. The results showed that the tensile strength measured by the SCB test was consistently higher than that measured by the IDT test at 25 °C. In addition, the SCB test showed a stronger correlation between increasing binder content and tensile strength. For binder contents ranging from 4
... Show MoreThe distress of moisture induced damage in flexible pavement received tremendous attention over the past decades. The harmful effects of this distress expand the deterioration of other known distresses such as rutting and fatigue cracking. This paper focused on the efficiency of using the waste material of demolished concrete to prepare asphalt mixtures that can withstand the effect of moisture in the pavement. For this purpose, different percentages of waste demolished concrete (0, 10, 20, 30, 50, 70 and 100) were embedded as a replacement for coarse aggregate to construct the base course. The optimum asphalt contents were determined depending on the Marshall method. Then after, two parameters were founded to evaluate the moisture
... Show Morea-Ge: As thin films have prepared by thermal evaporation teclmique, then they were annealing at various temperatures within the
range (373-473) K. The result of X-ray di ffraction spectrum was showing that all the specimens remained in amorphous structure before and after annealing process. This paper studied the effect of annealing temperature as a function of wavelength on the optical energy gap and optical constants for the a-Ge:As thin films . Results have showed that there was an increasing in the optical energy gap
{Egopt) values with the in ,;rcasing of the annealing temperatures within
... Show More