An innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.3V, and NaCl concentration of 1.4 g/L. This study demonstrated that the carbon fiber electrode was very efficient in Cr(VI) ions removal and the BBD methodology was a practical and effective strategy for predicting the results of various experimental conditions during a CDI process for the removal of chromium ions.
In this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the nanoparticles of anatase TiO2 have good cata
... Show MoreA laboratory investigation of six different tests were conducted on silty clay soil spiked with lead in concentrations of 1500 mg/kg. A constant DC voltage gradient of 1 V/cm was applied for all these tests with duration of 7 days remediation process for each test. Different purging solutions and addition configurations, i.e. injection wells, were investigated experimentally to enhance the removal of lead from Iraqi soil during electro-kinetic remediation process. The experimental results showed that the overall removal efficiency of lead for tests conducted with distilled water, 0.1 M acetic acid, 0.2 M EDTA and 1 M ammonium citrate as the purging solutions were equal to 18 %, 37 %, 42 %, and 29 %, respectively. H
... Show MoreThe degradation performance of aqueous solution of pesticide Alachlor has been studied at solar pilot scale plant in two photocatalytic systems: homogeneous photocatalysis by photo-Fenton and heterogeneous photocatalysis with titanium dioxide. The pilot scale system included of compound parabolic collectors specially designed for solar photocatalytic applications, and installed at University of Baghdad, Department of Environmental Engineering back yard. The influence of different concentrations, H2O2 (200-2400 mg/l), Fe+2(5- 30 mg/l) and TiO2 (100-500 mg/l) and their relationship with the degradation efficiency were studied.
The COD removal efficienc
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the
... Show MoreIn this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show MoreThis study was designed to look for certain biochemical markers(serum uric acid and serum peroxynitrite) in women presented with obesity and to compare the level of these markers with non-obese women. A total number of 63 women were recruited from outpatients and private clinics to admit in this study. The patients were grouped into non obese women (Group I) and obese women (Group II). The anthropometric and blood pressure were determined and venous blood was obtained from each patient for determination of C-reactive protein, uric acid and peroxynitrite. The results showed that there were no significant differences in age or in concomitant or associated diseases in both groups except rheumatoid arthritis which account 80% of group I and 25%
... Show MoreInduced EF is among the most important of advanced oxidation processes (AOPs) It was employed to treat different kinds of wastewater. In the present review, the types and mechanism of induced EF were outlined. Parameters affecting this process have been mentioned with details. These are current density, pH, H2O2 concentration, and time. The application of induced electro Fenton in various sectors of industries like textile, petroleum refineries, and pharmaceutical were outlined. The outcomes of this review demonstrate the vital role of induced EF in treatment of wastewater at high efficiency and low cost in contrast with conventional technique
Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show More