The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur significant error when applied for unconventional tight gas reservoirs. The implementation of multi-tank, compartmented reservoir models are reported to better represent the behaviour of tight gas reservoirs. This study focus to develop a simple numerical method to solve the MBE using the concept of multi-tank, compartmented reservoir model. A simple and practical computational tool is developed by solving the numerical model using False Position iterative method. The tool is applied to calculate GIIP and UR factor for an Australian tight gas field after validation of tool based on history matching. The results demonstrated that the developed tool can be used for the better estimation of GIIP and UR factor with better accuracy. The program can also be used as an efficient tool, especially in the case of homogenous tight gas reservoir, as an alternative to the reservoir simulation to understand the pressure decline behaviour with cumulative gas production; and to estimate GIIP and UR factor.
Abstract
Most of the industrial organization in the world became suffering from the problem of the pollution of the poisonous chemicals things, this urged to depend on the principle of the responsible production, because it has the positive role by dealing with these chemical things and to safe the health of the society, due to the main goal of this study is to restrict the role responsible production in accomplishing the system of the environmental management through an actual study in the northern gas company in Kirkuk province, the topic has acquired a big importance bacause there were a limited number of studies and res
... Show MoreThe present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, sep
... Show MoreIt is known that the science of jurisprudence is one of the most important Islamic sciences. Because it is a science that regulates the life of man and society and provides them with happiness in this world and the hereafter, if they follow its provisions with precision and care. The importance of this topic lies in the fact that it represents an urgent social need to show the compatibility of tribal customs with social jurisprudence. The job of the jurists was and still is to clarify the legal rulings according to what the Holy Qur’an has shown, and what has been reported on the authority of the Great Prophet (6) and the pure imams (:).It is no secret to everyone that the Islamic civilization is (the civilization of jurisprudence), just
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
This paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
In this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s
... Show More