A new series of schiff base and aminothiadiazole derivatives of N- substituted phthalimide (I-VI) were synthesized. In this work, the intermediate 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde compound (I), was formed by reaction of 4-amino benzaldehyde with phthalic anhydride in glacial acetic acid(GAA). A series of Schiff bases (IV-VI) was prepared by the reaction of benzidine with compound (I) in ethanol and presence of GAA as a catalyst to form compound (IV) which react with compound (I) and p-nitro benzyldehyde to give compound (V) and (VI) respectively. A new phthalimide thiosemi-carbazone derivative (ll) was prepared by reaction of compound (l) with thiosemi-carbazide HCl in the presence of equimolar amount of sodium acetate. Finally, a new phthalimide containing (1,3,4- thiadiazole ring) compound (III) was formed by bromine mediated “oxidative intramolecular cyclization” of compound (I) in the presence of sodium acetate. All of the final target compounds' structures were successfully synthesized and confirmed using analytical and spectroscopic data. These compounds were identified and confirmed by melting points, TLC, FT IR, and 1H NMR. While the antimicrobial effect of the new derivatives has been assessed in vitro against G-positive, G-negative bacteria and fungi activity. All screened compounds exhibited no activity against G-positive bacteria (Staph. Aureus, and Bacillus subtilis). Many of synthesized compounds displayed moderate effect against “G-negative bacteria Escherichia coli, and Klebsiella pneumonia and against Candida tropicalis”. While the best antifungal activity was obtained from compound I which has high activity against Candida tropicalis.
In this research, the preparation of bidentate Schiff base was carried out via the condensation reaction of both the salicylaldehyde with 1-phenyl-2,3-dimethyl-4-amino-5-oxo-pyrazole to form the ligand (L). The mentioned ligand was used to prepare complexes with transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The resulting complexes were separated and characterized by FTIR and UV-Vis spectroscopic technique. Elemental analysis for Carbon, Hydrogen and Nitrogen elements, electronic spectra of the ligand and complexes were obtained, and the magnetic susceptibility tests were also achieved to measure the dipole moments. The molar conductivities were also measured and determination of chlorine content in the complexes and
... Show MoreIn this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.
A new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphyloc
... Show MoreA first step in this research was to synthesize Schiff's bases(1-3)using an Amoxcilline intensification reaction with different aromatic aldehydes in absolute ethanol. In benzene and refluxing conditions,Schiff's bases were cyclized with succinic and Phthalic anhydride to give a new sequence of 1,3-oxazepine derivatives(4-6) and (7-9),respectively.The last step,cyclization reactions with sodium azide in THF solvent resulted in the formation of [10 and 11], which are supposed to be biologically significant.FT.IR, 1H-NMR and 13C-NMR (for compound 4,7,9, and 11),as well as melting points reported, were used to characterize these prepared compounds ,Bacillus (G+), Staphylococcus (G+), and E.Coli (G-)were screened against these compounds. . To i
... Show MoreEtodolac is choice of drug for pain and inflammation but has major side effects of gastric ulcers that are due to free carboxylic group. Etodolac belongs to the chemical class of non-selective COX-inhibitor but preferentially COX-2 inhibitor. Here the ester linked mutual prodrugs of etodolac with phytophenols like vanillin, carvacrol, umbelliferone, guaiacol, sesamol and syringaldehyde were synthesized. All the prodrugs were characterized by IR-spectroscopy, 1H-NMR, 13C-NMR and mass spectrometry. Among the synthesized prodrugs, the Eto-van, Eto-umbe, Eto-sesa and Eto-syr showed improved analgesic and anti-inflammatory activity compared to etodolac. All the synthesized prodrugs showed less ulcerogenic side effects co
... Show MoreThe chromatographic behaviour of liquid crystalline compounds benzylidene-p-aminobenzoic acid and 4-(p-methyl benzylidene)-p-aminobenzoic acid as stationary phases for the separation of dimethylphenol isomers was investigated. These isomers were analysed on benzylidene-p-aminobenzoic acid within a nematic range of 169-194 ◦C with a temperature interval of 5 ◦C. Better peak resolution was at a column temperature of 190 ◦C. The analysis was repeated on a 4-(p-methyl benzylidene)-p-aminobenzoic acid column at a nematic temperature of 256 ◦C, which represented the end of the nematic range, and gave the optimum peak resolution. It was found that isomer better separation was obtained at 20% loading for both liquid crystal materials. Other
... Show MoreFH Ghanim, Journal of Global Pharma Technology, 2018