Several new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different aldehydes produced a new Schiff base derivatives [11, 12]. Reaction of derivative [4] with different aldehydes produced a new derivatives [5-8]. All the synthesized compounds have been characterized by melting points, FTIR, 1HNMR (some of them) and mass spectroscopy of compound [2]. Derivatives [5, 6, 7, 10, 11, 12] were tested against inhibition of E-coli, staphyloccus aureus and were all found to be active. Schem1, 2 illustrated the reaction steps
A new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
A Schiff base ligand (L) was synthesized via condensation of
A new four series of 2,2′-([1,1′- phenyl or biphenyl]-4,4′-diylbis(azanediyl)) bis(N′-((E)-1-(4-alkoxyphenyl) ethylidene) acetohydrazide) [V-XI]a,b and 1,1′-(2,2′-([1,1′- phenyl or biphenyl]-4,4′-diyl bis(azanediyl)) bis- (acetyl)) bis(3-(4-ethoxyphenyl)-1H-pyrazole-4-carbalde hyde) [XII-XVIII]a,b have been synthesized by varying terminal lateral alkoxy chain length (n = 1–3, 5–8), central linkage group (phenyl or biphenyl) and induced pyrazole heterocyclic ring in the main chain. The last two series were synthesized by the cyclization of substituted acetophenone hydrazones with Vilsmeier–Haack reagent (DMF/POCl3) to produce 4-formylpyrazole derivatives. The chemical structures of the synthesized compounds were examine
... Show MoreA series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD), particle size analyzer, morphology by atomic force microscope (AFM) and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was redu
... Show MoreThe preparation of some new coordination compounds for nikel (II), manganese (II), copper (II), cobalt (II)and mercury (II), with ligand obtained from Benzoinand2-amino pyridine.The ligand[6-(2-hydroxy-1,2-diphenylethylideneamino)pyridin-3-ylium)](L) was made from reactin ethanol with metal salts in (1:1)(metal : ligand)ratio.[MLCl] was the inclusive formula of the complexes where M= Mn(II),Co(II),Ni(II),Cu(II) and Hg(II). Metal analysis by electronic spectra, atomic absorption ,infrared spectra, 1H&13C-NMR(only ligand)spectral studies, magnetic moment and molar conductance measurements used to describe the compounds.The determinations indicated that the ligand coordinates with the metal (II) ion in neutral tridentate manner th
... Show MoreOur work included a synthesis of three new imine derivatives—1,3-thiazinan-4-one, 1,3-oxazinan-6-one and 1,3-oxazepin-4,7-dione—which contained an adamantyl fragment. These were produced via the condensation of the Schiff`s base (E)-N-(adamantan-1-yl)-1-(3-aryl)methanimine with 3-mercaptopropanoic acid; 3-chloropropanoic acid; and maleic, citraconic anhydride, respectively. These new imines were prepared via the condensation of adamantan-1-ylamine and 3-nitro-, 3-bromobenzaldehyde in n-BuOH. We obtained a good yield of products. FTIR, 1H NMR spectroscopy and C.H.N.S analysis were used to diagnostic the products. The molecular structure of (E)-N-(adamantan-1-yl
... Show MoreCoupling reaction of 4-aminoantipyrene with 8-hydroxyqunoline gave the new bidentate azo ligand 5-(4-antipyrene azo)-8-hydroxyqunoline. Treatment of this ligand with the following metals ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, FT.IR, UV-Vis spectroscopic as well as magnetic susceptibility and conductivity measurements. Chloride ion content were also evaluated by (Mohr Method). From above data, the proposed molecular structure for these complexes as octahedral geometry.
Objective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B
... Show MoreAbstract Organic compounds with pyrazole cores have a variety of uses, notably in the pharmaceutical and agrochemical sectors. The interest in creating pyrazole compounds, examining their many features, and looking for potential uses is growing. Our work has concert with synthesis of chalcones and pyrazolines, then finally pyrazoline-aniline derivatives and evaluation their anti-inflammatory, antibacterial and antifungal activities